Abstract
Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.
하천에 광범위하게 활착되는 식생은 수위 변화 및 흐름 저항에 절대적인 영향을 미칠 뿐만 아니라 하천 시스템 전반에 영향을 미치는 중요 요소이다. 따라서 유입되는 식생의 형태와 규모를 정확하게 파악하는 것이 매우 중요함에도 불구하고 현장에서 이를 파악하기란 쉽지 않은 일이다. 따라서 최근에는 지상 레이저 스캐닝 등을 활용하여 대용량의 식생 정보를 취득하는 연구가 시도되고 있다. 그러나 식생의 복잡한 형상으로 인해 캐노피 영역의 정확한 정보를 획득하기 어려우며, 자연적인 영향에 매우 민감하게 반응한다는 한계가 있다. 본 연구에서는 3차원 지상 레이저 스캐닝을 통해 수집된 고해상도의 포인트 클라우드 데이터를 복셀 형식으로 재구현하여 식생의 물리적 구조를 분석하였다. 먼저 잎이 없는 단순한 형태, 잎이 있는 완전한 형태의 식생 및 패치 규모 식생 조건으로 설정하여 각각의 물리적 구조를 분석하였다. 이를 위해 측정된 데이터의 이상치 제거 및 불필요한 데이터의 필터링을 위해 통계적 이상치 제거 방법을 활용하여 각각 17 %, 26 %, 25 %의 포인트를 제거하였다. 또한 후처리 된 포인트 클라우드로부터 복셀 크기별 식생 형상을 재구현하여 실제 식생의 부피와 비교하였으며, 분석 결과, 오차 범위는 각 조건별로 8 %, 25 %, 63 %로 나타났다. 대상 샘플의 규모가 클수록 더 큰 오차가 발생하였으며, 복셀 크기 조정 시 식생의 표면이 시각적으로 비슷하게 보이지만 전체 식생의 부피는 이러한 변화에 매우 민감한 것으로 나타났다.