DOI QR코드

DOI QR Code

Reconfiguration of Physical Structure of Vegetation by Voxelization Based on 3D Point Clouds

3차원 포인트 클라우드 기반 복셀화에 의한 식생의 물리적 구조 재구현

  • Ahn, Myeonghui (Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, Eun-kyung (Korea Institute of Civil Engineering and Building Technology) ;
  • Bae, Inhyeok (University of Science and Technology) ;
  • Ji, Un ((Korea Institute of Civil Engineering and Building Technology, University of Science and Technology)
  • 안명희 (한국건설기술연구원 국토보전연구본부) ;
  • 장은경 (한국건설기술연구원 국토보전연구본부) ;
  • 배인혁 (과학기술연합대학원대학교 건설환경공학) ;
  • 지운 (한국건설기술연구원 국토보전연구본부, 과학기술연합대학원대학교 건설환경공학)
  • Received : 2020.07.30
  • Accepted : 2020.09.25
  • Published : 2020.12.01

Abstract

Vegetation affects water level change and flow resistance in rivers and impacts waterway ecosystems as a whole. Therefore, it is important to have accurate information about the species, shape, and size of any river vegetation. However, it is not easy to collect full vegetation data on-site, so recent studies have attempted to obtain large amounts of vegetation data using terrestrial laser scanning (TLS). Also, due to the complex shape of vegetation, it is not easy to obtain accurate information about the canopy area, and there are limitations due to a complex range of variables. Therefore, the physical structure of vegetation was analyzed in this study by reconfiguring high-resolution point cloud data collected through 3-dimensional terrestrial laser scanning (3D TLS) in a voxel. Each physical structure was analyzed under three different conditions: a simple vegetation formation without leaves, a complete formation with leaves, and a patch-scale vegetation formation. In the raw data, the outlier and unnecessary data were filtered and removed by Statistical Outlier Removal (SOR), resulting in 17%, 26%, and 25% of data being removed, respectively. Also, vegetation volume by voxel size was reconfigured from post-processed point clouds and compared with vegetation volume; the analysis showed that the margin of error was 8%, 25%, and 63% for each condition, respectively. The larger the size of the target sample, the larger the error. The vegetation surface looked visually similar when resizing the voxel; however, the volume of the entire vegetation was susceptible to error.

하천에 광범위하게 활착되는 식생은 수위 변화 및 흐름 저항에 절대적인 영향을 미칠 뿐만 아니라 하천 시스템 전반에 영향을 미치는 중요 요소이다. 따라서 유입되는 식생의 형태와 규모를 정확하게 파악하는 것이 매우 중요함에도 불구하고 현장에서 이를 파악하기란 쉽지 않은 일이다. 따라서 최근에는 지상 레이저 스캐닝 등을 활용하여 대용량의 식생 정보를 취득하는 연구가 시도되고 있다. 그러나 식생의 복잡한 형상으로 인해 캐노피 영역의 정확한 정보를 획득하기 어려우며, 자연적인 영향에 매우 민감하게 반응한다는 한계가 있다. 본 연구에서는 3차원 지상 레이저 스캐닝을 통해 수집된 고해상도의 포인트 클라우드 데이터를 복셀 형식으로 재구현하여 식생의 물리적 구조를 분석하였다. 먼저 잎이 없는 단순한 형태, 잎이 있는 완전한 형태의 식생 및 패치 규모 식생 조건으로 설정하여 각각의 물리적 구조를 분석하였다. 이를 위해 측정된 데이터의 이상치 제거 및 불필요한 데이터의 필터링을 위해 통계적 이상치 제거 방법을 활용하여 각각 17 %, 26 %, 25 %의 포인트를 제거하였다. 또한 후처리 된 포인트 클라우드로부터 복셀 크기별 식생 형상을 재구현하여 실제 식생의 부피와 비교하였으며, 분석 결과, 오차 범위는 각 조건별로 8 %, 25 %, 63 %로 나타났다. 대상 샘플의 규모가 클수록 더 큰 오차가 발생하였으며, 복셀 크기 조정 시 식생의 표면이 시각적으로 비슷하게 보이지만 전체 식생의 부피는 이러한 변화에 매우 민감한 것으로 나타났다.

Keywords

References

  1. Aberle, J. and Jarvela, J. (2013). "Flow resistance of emergent rigid and flexible floodplain vegetation." Journal of Hydraulic Research, Vol. 51, No. 1, pp. 33-45. DOI: 10.1080/00221686.2012.754795.
  2. Antonarakis, A. S., Richards, K. S., Brasington, J. and Bithell, M. (2009). "Leafless roughness of complex tree morphology using terrestrial lidar." Water Resources Research, Vol. 45, No. 10. DOI: 10.1029/2008WR007666.
  3. Beland, M., Widlowski, J. L. and Fournier, R. A. (2014). "A model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR." Environmental Modelling & Software, Vol. 51, pp. 184-189. DOI: 10.1016/j.envsoft.2013.09.034.
  4. Bienert, A., Hess, C., Maas, H. G. and Von Oheimb, G. (2014). "A voxel-based technique to estimate the volume of trees from terrestrial laser scanner data." International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, Vol. XL-5, pp. 101-106. DOI: 10.5194/isprsarchives-xl-5-101-2014.
  5. Boothroyd, R. J. (2017). Flow-vegetation interactions at the plant-scale: the importance of volumetric canopy morphology on flow field dynamics, Doctoral thesis, Durham University, Durham, UK.
  6. Boothroyd, R. J., Hardy, R. J., Warburton, J. and Marjoribanks, T. I. (2016). "The importance of accurately representing submerged vegetation morphology in the numerical prediction of complex river flow." Earth Surface Processes and Landforms, Vol. 41, No. 4, pp. 567-576. DOI: 10.1002/esp.3871.
  7. Brodu, N. and Lague, D. (2012). "3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology." ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 68, pp. 121-134. DOI: 10.1016/j.isprsjprs.2012.01.006.
  8. Gurnell, A. (2014). "Plants as river system engineers." Earth Surface Processes and Landforms, Vol. 39, No. 1, pp. 4-25. DOI: 10.1002/esp.3397.
  9. Hosoi, F. and Omasa, K. (2006). "Voxel-based 3-D modeling of individual trees for estimating leaf area density using high-resolution portable scanning lidar." IEEE transactions on geoscience and remote sensing, Vol. 44, No. 12, pp. 3610-3618. DOI: 10.1109/TGRS.2006.881743.
  10. Jalonen, J. and Jarvela, J. (2014). "Estimation of drag forces caused by natural woody vegetation of different scales." Journal of Hydrodynamics, Vol. 26, No. 4, pp. 608-623. DOI: 10.1016/S1001-6058(14)60068-8.
  11. Jalonen, J., Jarvela, J., Virtanen, J. P., Vaaja, M., Kurkela, M. and Hyyppa, H. (2015). "Determining characteristic vegetation areas by terrestrial laser scanning for floodplain flow modeling." Water, Vol. 7, No. 2, pp. 420-437. DOI: 10.3390/w7020420.
  12. Jang, E. K., Ahn, M. H. and Ji, U. (2020). "Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel." Ecology and Resilient Infrastructure, Vol. 7, No. 2, pp. 9-96. DOI: 10.1080/00221686.2012.754795 (in Korean).
  13. Luhar, M. and Nepf, H. M. (2013). "From the blade scale to the reach scale: A characterization of aquatic vegetative drag." Advances in Water Resources, Vol. 51, pp. 305-316. DOI: 10.1016/j.advwatres.2012.02.002.
  14. Rutzinger, M., Pratihast, A. K., Oude Elberink, S. and Vosselman, G. (2010). "Detection and modelling of 3D trees from mobile laser scanning data." International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 38, pp. 520-525.
  15. Wu, D., Phinn, S., Johansen, K., Robson, A., Muir, J. and Searle, C. (2018). "Estimating changes in leaf area, leaf area density, and vertical leaf area profile for mango, avocado, and macadamia tree crowns using terrestrial laser scanning." Remote Sensing, Vol. 10, No. 11, 1750. DOI:10.3390/rs10111750.