• Title/Summary/Keyword: 식물 방어

Search Result 162, Processing Time 0.023 seconds

Evaluation of the Antioxidant Potential and ldentification of Active Principles of Solanum nigrum L. on Antioxidant Defense Systems (까마중내 (Solanum nigrum L.) 항산화방어계의 항산화력 및 물질의 동정)

  • 임종국;정규영;정형진
    • Journal of Life Science
    • /
    • v.11 no.6
    • /
    • pp.509-516
    • /
    • 2001
  • Enzymes and non-enzymatic antioxidants are involved in defense of oxgen free radical intermediates in all aerobic cells. The non -enzymatic antioxidants and antioxidant enzyme from the extracts of Solanum nigrum L. known to be anticancer medicinal plant were examined in other to utilize the discovery in natural products as cancer chem-opereventive agents. The DPPH(1,1-diphenyl-2-picryl-hydrazyl) free radical scavening activity on plant position of Solanum nigrum L. was the highest in root, with stem, whole plant, seed, leaf and flower, at higher activities respectively. In extraction methods, the DPPH free radical scavenging activity by circulating extraction with 80 % MeOH. The DPPH activity of L6 fraction by LH-20 column chromatography showed about 6.7 times higher than that of ethyl acetate-fraction. These were identified as phenolic compounds such as 2-6-methano-3-benzazocin-11-ol, 2[1H]-phyidinethione and 2-hydroxy -5-methyl-benzaldehyde. Peroxidase(POD) and superoxide dismutase(SOD) activities of stem and root were higher than that of other plant positions and those of plant positions according to growing stage were the highest in 60 days after seeding. The numbers of isozyme pattern of POD and SOD showed 10 hands and 5 bands, respectively, especially, 8 bands of POD and 3 bands of SOC showed a difference according to plant positions.

  • PDF

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Antioxidative Activities and Whitening Effects of Ethyl Acetate Fractions from The Immature Seeds of Abeliophyllum distichum (미선나무 미성숙 종자의 항산화 및 미백 활성)

  • Jang, Tae Won;Park, Jae Ho
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.536-544
    • /
    • 2017
  • Abeliophyllum distichum Nakai is deciduous shrubs of flowering plant in Oleaceae. It is important plant resources and consists of one species in the world. Also the endemic plant of A. distichum has been protected and designed endangered plant in Korea. For this reason, study on the immature seeds of A. distichum (ADS) hasn't progressed. In the present study, we evaluated the antioxidant activity and inhibitory effects on proteins and mRNA levels were related in the whitening effect in B16F10 cells. ADS was effective for reaction oxygen species (ROS). ROS causes various diseases such as aging, inflammation, cancer, and etc. Antioxidant properties were evaluated DPPH, ABTS radical scavenging activity and Reducing power. Plants were known that contained phenolic compounds were related in antioxidant activity. Phenolic compounds were phytochemicals commonly named natural polyphenols. These are secondary metabolites of plants involved in the defense against different types of stresses. In results, ADS suppressed the expression and transcription of Tyrosinase, TRP-1, TRP-2, and Microphthalmia-associated transcription factor (MITF). Tyrosinase, tyrosinase-related protein 1 (TRP-1), tyrosinase-related protein 1 (TRP-2) are known to play an important role in melanin biosynthesis. MITF regulated the expression and transcription of Tyrosinase, TRP-1, and TRP-2. In conclusion, ADS was effective in both antioxidant activities and whitening effects. Also, they were associated with the content of phenolic compounds. We suggested that ADS can be use antioxidants and skin-whitening functional cosmetics material derived from natural plant resources.

Effect of Plants Extracts on Lipid Peroxidation of Rat Brain Tissue Induced by Reactive Oxygen Species (활성산소에 의해 유도된 흰쥐 뇌조직의 지질산화에 대한 식물체 추출물의 효과)

  • Kim, Seok-Joong;Han, Dae-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.976-982
    • /
    • 2005
  • Abilities of various edible plants and natural antioxidants to protect brain against oxidative damages were evaluated using brain homogenate of perfused Sprague-Dawley rat. Oxidative damage, expressed as lipid peroxidation (LPO), indicating total quantity of malondialdehyde and 4-hydroxyalkenal, increased from 4.1 to 6.9nmol/mg protein by treatment of $2.5{\mu}M$ ferrous sulfate and 7.5mM hydrogen peroxide as source of reactive oxygen species (ROS) on brain homogenate for 10min at $37^{\circ}C$ Mallow(88%) in leafy vegetables, small potato (93%) in root vegetables, green red pepper (76%) in fruit vegetables, and avocado (96%) in fruits showed highest LPO inhibition capacities. Ability of mushrooms decreased in order of nameko, shiitake, pine mushroom, oyster mushroom, and new type pine mushroom. Among natural antioxidants tested, (+)catechin (91%), (-)epigallocatechin gallate (85%), (-)epicatechin gallate (83%), and kaempferol(83%) showed high LPO inhibition capacities.

Flavonoid Biosynthesis: Biochemistry and Metabolic Engineering (Flavonoid 생합성:생화학과 대사공학적 응용)

  • Park, Jong-Sug;Kim, Jong-Bum;Kim, Kyung-Hwan;Ha, Sun-Hwa;Han, Bum-Soo;Kim, Yong-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.265-275
    • /
    • 2002
  • Flavonoid biosynthesis is one of the most extensively studied areas in the secondary metabolism. Due to the study of flavonoid metabolism in diverse plant system, the pathways become the best characterized secondary metabolites and can be excellent targets for metabolic engineering. These flavonoid-derived secondary metabolites have been considerably divergent functional roles: floral pigment, anticancer, antiviral, antitoxin, and hepatoprotective. Three species have been significant for elucidating the flavonoid metabolism and isolating the genes controlling the flavonoid genes: maize (Zea mays), snapdragon (Antirrhinum majus) and petunia (Prtunia hybrida). Recently, many genes involved in biosynthesis of flavonoid have been isolated and characterized using mutation and recombinant DNA technologies including transposon tagging and T-DNA tagging which are novel approaches for the discovery of uncharacterized genes. Metabolic engineering of flavonoid biosynthesis was approached by sense or antisense manipulation of the genes related with flavonoid pathway, or by modified expression of regulatory genes. So, the use of a variety of experimental tools and metabolic engineering facilitated the characterization of the flavonoid metabolism. Here we review recent progresses in flavonoid metabolism: confirmation of genes, metabolic engineering, and applications in the industrial use.

Expression profile of defense-related genes in response to gamma radiation stress (방사선 스트레스 반응 방어 유전자의 탐색 및 발현 분석)

  • Park, Nuri;Ha, Hye-Jeong;Subburaj, Saminathan;Choi, Seo-Hee;Jeon, Yongsam;Jin, Yong-Tae;Tu, Luhua;Kumari, Shipra;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.359-366
    • /
    • 2016
  • Tradescantia is a perennial plant in the family of Commelinaceae. It is known to be sensitive to radiation. In this study, Tradescantia BNL 4430 was irradiated with gamma radiation at doses of 50 to 1,000 mGy in a phytotron equipped with a $^{60}Co$ radiation source at Korea Atomic Energy Research Institute, Korea. At 13 days after irradiation, we extracted RNA from irradiated floral tissues for RNA-seq. Transcriptome assembly produced a total of 77, 326 unique transcripts. In plantlets exposed to 50, 250, 500, and 1000 mGy, the numbers of up-regulated genes with more than 2-fold of expression compared that in the control were 116, 222, 246, and 308, respectively. Most of the up-regulated genes induced by 50 mGy were heat shock proteins (HSPs) such as HSP 70, indicating that protein misfolding, aggregation, and translocation might have occurred during radiation stress. Similarly, highly up-regulated transcripts of the IQ-domain 6 were induced by 250 mGy, KAR-UP oxidoreductase 1 was induced by 500 mGy, and zinc transporter 1 precursor was induced by 1000 mGy. Reverse transcriptase (RT) PCR and quantitative real time PCR (qRT-PCR) further validated the increased mRNA expression levels of selected genes, consistent with DEG analysis results. However, 2.3 to 97- fold higher expression activities were induced by different doses of radiation based on qRT-PCR results. Results on the transcriptome of Tradescantia in response to radiation might provide unique identifiers to develop in situ monitoring kit for measuring radiation exposure around radiation facilities.

Antifungal activity of a chitinase purified from bean leaves (강낭콩 잎에서 정제한 키틴분해효소의 항균활성)

  • Park, Ro-Dong;Song, Kyong-Sook;Jung, Ihn-Woong
    • Applied Biological Chemistry
    • /
    • v.35 no.3
    • /
    • pp.191-195
    • /
    • 1992
  • In order to elucidate the plant-microorganism relationship, we purified an ethylene-inducible, basic 30 KD endochitinase from bean leaves and studied its antifungal activity by a hyphal extension-inhibition assay. The purified chitinase was effective in the inhibition of hyphal growth of Aspergillus fumigatus, Botrytis cinerea, Fusarium oxysporum, Rhizoctonia solani, while microbial chitinases of Serratia marcescens and Streptomyces griceus, egg white lysozyme and papya protease didn't affect hyphal growth of the fungi. The chitinase degraded the cell walls of Micrococcus lysodeikticus, suggesting the lysozyme activity of the chitinase. We discussed the implication of the bifunctional chitinase/lysozyme activities of the protein with hydrolysis of chitin in the rapidly extending hyphae of the fungi.

  • PDF

Late-Quaternary Vegetation in the Lake of Korea (영랑호, 월함지 및 방어진의 제4기 이후의 식피의 변천)

  • 장정희
    • Journal of Plant Biology
    • /
    • v.25 no.1
    • /
    • pp.37-53
    • /
    • 1982
  • Pollen analysis from lake districts, Youngnangho, Wolhamji and Bangeojin, revealed vegetational patterns in Korea. The pollen stratigraphy was divided into five zones, zone L, I, II, IIIa and IIIb for the past 15,000 years. During zone L (earlier than 10,500 yr BP), late-glacial period, Youngnangho was vegetated with a coniferous forest dominated by spruce, larch, haploxylon pine and fir with considerable amount of herbs. Zone I(10,500~7500 yr BP) was predominantly herbaceous vegetationj with significant amount of oak and diploxylon pine. It suggests that the overall environment became milder and drier than late-glacial period. Zone II(7,500~4,000 yr BP), hypsithermal period, showed significant warming condition, indicated by high pollen concentrations of oak, diploxylon pine and hornbeam, and by more diverse flora of deciduous broad-leaved trees than before. Herbs were not an important part of vegetation. Zone III$^a$(4,000~1,500 yr BP) had pine and oak as main elements. Birch increased slightly while hornbeam decreased in this time. It indicates cooling condition. Zone III$^b$(1,5000-present) which can be called pine period showed obvious human interference. Following forest clearance, agriculture was intensified. The beginning of logging and agriculture was discernible by a sudden decline of arboreal species and by considerable amount of rice, buckwheat, sorrel and plantain. Numerous charcoal fragments were observed in zone I and zone III$^b$.

  • PDF

A Calculation of Effective Dose Equivalent from Data of Environmental Monitoring around the Karlsruhe Nuclear Research Center (Karlsruhe 원자력연구소 주변의 환경방사능 측정자료로부터 실효선량당량계산)

  • Lee, Chang-Woo;Lee, Jeong-Ho;Wicke, A.
    • Journal of Radiation Protection and Research
    • /
    • v.15 no.2
    • /
    • pp.75-85
    • /
    • 1990
  • The dose calculations were carried out using environmental montoring data around Karlsruhe Nuclear Research Center(KfK). Ingestion of plant foods was the most important pathway, and the K-40 and Pb-210 natural radioisotopes in food were the most effective radiation source to man. The dose received from artificial nuclides were mostly emitted by gamma irradiation of Cs-134 and Cs-137 deposited on the ground. The effective dose equivalent in the KfK environment was far less than the dose equivalent limit recommended by ICRP.

  • PDF

Growth Promotion of Tobacco Plant by 3-hydroxy-2-Butanone from Bacillus vallismortis EXTN-1

  • Ann, Mi Na;Cho, Yung Eun;Ryu, Ho Jin;Kim, Heung Tae;Park, Kyungseok
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.388-393
    • /
    • 2013
  • It has been well documented that Bacillus vallismortis strain EXTN-1, a beneficial rhizosphere bacterium, could enhance plant growth and induce systemic resistance to diverse pathogens in plants. However, the molecular mechanisms for how the EXTN-1 promote plant growth and induce resistances to diverse pathogens. Here, we show that 3-Hydroxy-2-butanone, a volatile organic compound (VOCs) emitted from the EXTN1, is a key factor for the bacteria-mediated beneficial effects on plant growth and defense systems. We found that the presence of volatile signals of EXTN-1 resulted in growth promotion of tobacco seedlings. The identification and analysis of EXTN-1-secreted volatile signals by solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) indicated that a 3-hydroxy-2-butanone could provide not only the plant growth promotion, but also higher resistance against Pectobacterium carotovorum SCC1. These results suggest that a volatile compound released from EXTN-1 enhances the plant growth promotion and immunity of plants.