• Title/Summary/Keyword: 식물 방어

Search Result 162, Processing Time 0.02 seconds

Antibiosis of Cotton Fabric finished by Chamaecyparis Obtusa oil (편백나무 정유를 처리한 면섬유의 항균성)

  • Ryu, Jung-Jae;Kim, Jung-Gon;Kim, Young-Un;Park, Yong-Wan;Ko, Jung-An;Lim, Ji-Hye;Kim, Eui-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.80-80
    • /
    • 2011
  • 최근 환경과 건강에 대한 관심이 증대되면서, 천연 섬유를 소재로 사용한 최종 제품 역시 고급화 및 고기능화되고 있는 추세이며 섬유항균가공분야에 있어서도 천연 추출물을 이용한 항균가공이 주목을 받고 있다. 현재 항균가공에 사용되고 있는 항균제는 일반적으로 합성항균제를 사용하고 있고 이는 거의 대부분 자극성 화합물로써 인체에 잠재적 유해요인이 될 수 있고 제조 및 가공과정에서 환경오염을 유발시키는 문제점도 발생되고 있다. 반면 천연추출물을 사용할 경우 합성물질에 비해 포름알데히드 검출 등의 인체 안정성의 불안이 적어 건강차원에서 그 인식이 점차 증대되고 있는 추세이다. 천연항균물질에는 chitosan이나 식물에서 추출된 천연항균물질 등이 있는데 특히 식물에서 추출된 천연항균물질은 피톤치드(phytoncide)라고 표현되고 있으며 이는 수목들이 해충이나 미생물 등으로부터 자기방어를 위해 공기 중으로 발산하는 방향성의 항생물질을 뜻하는 말이다. 본 연구에서는 식물 중에서 피톤치드 정유의 함량이 많다고 알려진 측백나무과의 편백나무 정유를 이용하였으며 편백나무 정유가 식물성 천연 오일형태이므로 가공 처리 시 물과 계면이 발생되기 때문에 HLB(Hydrophilic Lipophlic Balance) 조건에 따른 최적 유화조건을 선정하였으며 편백나무 정유를 이용한 면직물의 항균 기능 부여를 위한 시험으로 편백나무 정유 처리 농도에 따른 항균성을 평가해 보고자 하였다. 실험 결과 편백나무 정유는 HLB 15이상 계면활성제 사용 시 물에 용해성이 좋고 안정된 에멀젼 상태를 보였으며 제조된 편백나무 정유 가공액 5%이상 처리 시 Staphylococcus aureus과 Klebsiella pneumoniae의 99.9% 정균감소율을 나타내었다.

  • PDF

Influence of Hexaconazole on Biochemical Constituents of Groundnut (땅콩의 생화학성분에 미치는 Hexaconazole의 영향)

  • Johnson, I.;Marimuthu, T.;Samiyappan, R.;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2008
  • In this study, hexaconazole 5% SC, an ergosterol biosynthesis inhibitor, was tested on groundnut with its recommended ($500\;mL\;ha^{-1}$) and higher ($2,000\;mL\;ha^{-1}$) concentrations under greenhouse conditions in India. Its influence on biochemical constituents of groundnut plants was assessed apart from its disease management potential against late leaf spot caused by Phaeoisariopsis personata (Berk and Curt). Likewise, leaf samples were collected from hexaconazole 5% SC-sprayed plants at different time intervals. Thereafter, their analyses showed considerable differences in the plant constituents, such as chlorophyll, soluble protein, and total phenol contents and the activity of nitrate reductase enzyme. The induction activity of defense-related enzyme, peroxidase, was also analyzed. However, no difference was observed in the isozymic pattern. Moreover, the ground kernels collected from treated plants also showed no difference in the estimated carbohydrate and other constituents.

Future Prospects for Industrial Application of Abscisic acid, a Stress-resistant Phytohormone (스트레스 내성 식물 호르몬인 앱시스산의 산업적 활용 전망)

  • Lee, Jeongho;Kim, Seunghee;Yoo, Hah Young
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.514-523
    • /
    • 2020
  • Plants are exposed to various types of stresses in their surroundings, and stress-resistant and regulatory proteins are produced as defense mechanisms. Abscisic acid is well known for its important role in stress signals as a phytohormone and is also involved in the physiological reactions of plants such as leaf senescence and seed dormancy. In particular, it has been found to perform a variety of functions in other biological systems, such as animals and microalgae, not plants. In this review, the biosynthesis and signaling process of abscisic acid and its function were investigated and the future prospects for the industrial application of abscisic acid in various biotechnologies, including agriculture, biomedical and industrial biotechnology, have been proposed based on study of emerging applications such as increased crop yields, disease treatment development and bioenergy production.

Riboflavin-based BioDoctorTM Induced Disease Resistance against Rice Blast and Bacterial Leaf Blight Diseases (리보플라빈을 함유한 바이오닥터TM 처리에 따른 벼 도열병과 흰잎마름병 억제효과)

  • Kang, Beom Ryong;Han, Song Hee;Kim, Chul Hong;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.202-207
    • /
    • 2016
  • Rice bacterial blight and blast are devastating rice diseases in worldwide. Riboflavin, vitamin B2, is an essential nutrient for human health, and is known to be as a growth regulator and as a plant defense activator against pathogens in plants. In this study, we investigated possibility of increasing internal vitamin B contents and inducing resistances against rice diseases by external foliar application of a riboflavin-based formulator called BioDoctor. In planta bioassay indicated that pretreatment of the foliar application of 1,000-fold or 500-fold diluted BioDoctor significantly induced disease resistance against rice blast and bacterial blight. In addition, about four fold higher levels of riboflavin contents were detected in the BioDoctor treated rice grain and stem compared to those of untreated rice. Our results indicated that foliar application of the riboflavin has a great potential to control plant diseases and to enhance internal vitamin contents in rice.

Comparison of Soyasaponin Group B Contents in Soybean Seed by Different Cultivars and Regional Background (지대 및 품종(재배종)별 콩사포닌그룹B 함량의 비교)

  • Nam, Jung-Hwan;Jeong, Jin-Cheol;Yoon, Young-Ho;Hong, Su-Young;Kim, Su-Jeong;Jin, Yong-Ik;Jee, Sam-Nyu;Kim, Hyun-Sam;Ok, Hyun-Choong;Nho, Chu-Won;Pan, Cheol-Ho
    • Korean Journal of Plant Resources
    • /
    • v.25 no.4
    • /
    • pp.394-400
    • /
    • 2012
  • Contents of soyasaponin group B were compared according to two regions and ten varieties by HPLC. Those compounds were known to be beneficial for health. After soyasaponins were isolated and identified, those isolated compounds were used for HPLC analysis. The contents of soyasaponin were very different by regions but highest in the soybean with black seed coat. It was appeared that environmental difference for soybean growth could strongly change of soyasaponin contents.

Organically Bound Tritium in the Plants after Acute HTO Exposure (HTO 피폭후 식물의 조직결합수에 관한 연구)

  • Kim, Sang-Bog;Lee, Won-Yun;Choi, Young-Ho;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 1998
  • Tritium is released into the environment as various form but HTO is most relevant to the incorporation of tritium into living organisms and to the formation of OBT. Tritiated compounds may be transported to humans via several tropic levels. Retention times of organically bound tritium in organisms are considerably longer than those of tritiated water, which has significant consequences on exposure dose estimation. It is rather difficult to predict the amount of OBT produced by the photosynthetic process of plants because it may be influenced by a multitude of environmental factors and plant parameters. Tritiated organic matters are classified as the exchangeable or nonexchangeable bound tritium according to the bound form. After short term HTO exposure in plants, the formation and uptake of OBT were evaluated.

  • PDF

Preference of Apple Leaves of Three Cultivars, Fuji, Tsugaru and Hongro by Tetranychus urticae Koch and Its Life Table Analysis (점박이응애의 사과 품종(후지, 쓰가루, 홍로)에 대한 선호성과 생명표 분석)

  • Kim, Young-Il;Jung, Chuleui
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.63-70
    • /
    • 2021
  • Two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae) is one of the major pests in apple orchards. TSSM was known to show different population dynamics depending on apple cultivars. We tested the host plant preference and fitness of TSSM on the leaves of 3 apple cultivars, Fuji, Tsugaru, and Hongro. TSSM showed higher behavioral preference to Fuji than Tsugaru and Hongro, and showed a higher fecundity in Fuji. The immature development of this mite was the shortest in Fuji and longest in Hongro. Total fecundities were not significantly different among cultivars, but daily fecundity was higher and longevity was lower in Fuji. Hongro was the less preferred cultivar for TSSM, and showed the lowest fitness by life table parameters. These results could explain the possible mechanisms of differential population dynamics among apple cultivars. Further study including diverse apple cultivars currently available in Korea could help to deploy time- and cultivar- specific IPM tactics.

Effects of insect herbivory on extrafloral nectar production of Impatiens balsamina (봉선화 꽃외화밀 생산에 곤충 초식이 미치는 영향)

  • Nam, Ki-Jung
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.131-135
    • /
    • 2018
  • Plants produce extrafloral nectar (EFN), liquid of carbohydrates to protect themselves against various insect herbivores through attracting natural enemy, ants, wasp and parasitoids, so EFN production is well known as one of indirect defense mechanisms. In many plants, EFN production is increased or induced when plants are attacked and damaged by insect feeding, whereas there are some plants whose EFN production is not altered or even decreased upon insect attack. The feeding types (chewing or sap feeding) of insects attacking plants also affect EFN production. The objective of this study was to examine how insect herbivore alters production of extrafloral nectar of Impatiens balsamina. Two different types of herbivores, leaf chewing and sap feeding insects, Spodoptera litura and Impatientinum impatiens respectively, are utilized. Plants were mechanically damaged by making holes on leaves with Jasmonic acid (JA) and regurgitate of S. litura added on. Two different densities of aphids were confined on leaves. The results of the study was that mechanical damage and JA or regurgitate addition did not affect EFN production in I. balsamina. Aphid feeding, regardless of density treated, decreased EFN production. The results of the study suggest that production of extrafloral nectar of Impatiens balsamina can be changed by insect feeding, and the effects of insect feeding can depend on the type of insects.

AtERF11 is a positive regulator for disease resistance against a bacterial pathogen, Pseudomonas syringae, in Arabidopsis thaliana (애기장대 AtERF11 유전자에 의한 Pseudomonas syringae에 대한 병 저항성 유도)

  • Kwon, Tack-Min;Jung, Yun-Hui;Jeong, Soon-Jae;Yi, Young-Byung;Nam, Jae-Sung
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.235-240
    • /
    • 2007
  • AvrRpt2 protein triggers hypersensitive response (HR) and strong disease resistance when it is translocated from a bacterial pathogen Pseudomonas sp. to host plant cells containing a cognate RPS2 resistance protein through Type III Secretion System (TTSS). However, AvrRpt2 protein can function as the effector that suppresses a basal defense and enhances the disease symptom when functional RPS2 resistance protein is absent in the infected plant cells. Using Affymetrix Arabidopsis DNA chip, we found that many genes were specifically regulated by AvrRpt2 protein in the rps2 Arabidopsis mutant. Here, we showed that expression of AtERF11 that is known as a member of B1a subcluster of AP2/ERF transcription factor family was down regulated specifically by AvrRpt2. To determine its function in plant resistance, we also generated the Arabidopsis thaliana transgenic plants constitutively overexpressing AtERF11 under CaMV 355 promoter, which conferred an enhanced resistance against a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, these results collectively suggest that AtERF11 plays a role as a positive regulator for disease resistance against biotrophic bacterial pathogen in plant.

Characterization of SID2 that is required for the production of salicylic acid by using β-GLUCURONIDASE and LUCIFERASE reporter system in Arabidoposis (리포트 시스템을 이용한 살리실산 생합성 유전자 SID2의 발현 해석)

  • Hong, Mi-Ju;Cheong, Mi-Sun;Lee, Ji-Young;Kim, Hun;Jeong, Jae-Cheol;Shen, Mingzhe;Ali, Zahir;Park, Bo-Kyung;Choi, Won-Kyun;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Salicylic acid(SA) is a phytohormone that is related to plant defense mechanism. The SA accumulation is triggered by abiotic and biotic stresses. SA acts as a signal molecular compound mediating systemic acquired resistance and hypersensitive response in plant. Although the role of SA has been studied extensively, an understanding of the SA regulatory mechanism is still lacking in plants. In order to comprehend SA regulatory mechanism, we have been transformed with a SID2 promoter:GUS::LUC fusion construct into siz1-2 mutant and wild plant(Col-0). SIZ1 encodes SUMO E3 ligase and negatively regulates SA accumulation in plants. SID2(SALICYLIC ACID INDUCTION DEFICIENT2) is a crucial enzyme of SA biosynthesis. The Arabidopsis SID2 gene encodes isochorismate synthase(ICS) that controls SA level by conversion of chorismate to isochorismate. We compared the regulation of SID2 in wild-type and siz1-2 transgenic plants that express SID2 promoter:GUS::LUC constructs respectively. The expressions of $\beta$-GLUCURONIDASE and LUCIFERASE were higher in siz 1-2 transgenic plant without any stress treatment. SID2 promoter:GUS::LUC/siz1-2 transgenic plant will be used as a starting material for isolation of siz1-2 suppressor mutants and genes involved in SA-mediated stress signaling pathway.