• Title/Summary/Keyword: 식물 방어

Search Result 162, Processing Time 0.03 seconds

Characterization and screening of pyrrolizidine alkaloids by UPLC-MS/MS: Application to honey (UPLC-MS/MS를 이용한 벌꿀제품의 피롤리지딘 알칼로이드 잔류실태 및 분석법 선진화)

  • Ryu, Hoejin;Kim, Oukhee;Lee, Eunsoon;Kim, Misun;Kim, Jeong-gon;Yun, Eunsun;Kim, Hyunjeong;Kim, Musang
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.252-261
    • /
    • 2019
  • Pyrrolizidine alkaloids (PAs) are a group of secondary metabolites that are produced by plants all over the world as a defense mechanism against herbivores. To date, over 660 PAs have been identified from more than 6,000 plant species that have been reported to be widely present in plants belonging to Asteraceae, Boraginaceae, and Fabaceae. This study describes an analytical method based on UPLC-MS/MS for the quantitation of 7 pyrrolizidine alkaloids (Lycopsamine, Echimidine, Retrorsine, Retrorsine N-oxide, Senecionine, Heliotrine, and Trichodesmine) in honey, and was applied to 84 honey samples for validation. Quantitation was performed based on a matrix-matched calibration to compensate for the matrix effect on the electrospray ionization. Good linear calibrations were obtained for all 7 PAs in the spiked honey samples (2.575-202.14 ㎍/kg; R2 ≥ 0.998). The extraction recoveries for most of the PAs in the honey samples were in the range of 81 %-108 %. The analysis showed that 6 of the 84 honey samples were contaminated by the PAs with the mean total sum of PAs being 47.19 ㎍/kg, and the concentrations of the PAs were observed to be in the range of 1.76-202.1 ㎍/kg. The retronecine type compounds (Echimidine, Lycopsamine) were the most frequently found PAs in honey. These data provide useful information for the assessment of human risk posed by the consumption of honey contaminated PAs.

Antifungal Activity and Biochemical Characterization of Lectin Isolated from Locular Fluid of Cherry Tomato Fruit (방울토마토 열매 locular fluid lectin의 항균성과 생화학적 특성)

  • Roh, Kwang-Soo
    • KSBB Journal
    • /
    • v.25 no.3
    • /
    • pp.289-296
    • /
    • 2010
  • Lectins are carbohydrate-binding and a cell-agglutinating proteins, and are concerted with a plants defence mechanism. In particular, chitin-binding lectins in locular fluid of cherry tomato fruit seemed to have a role in defending plants against fungi. The antifungal activity using lectin isolated from locular fluid of cherry tomato fruit was measured in the plant pathogen Cladosporium cucumerinum, Monosporascus cannonballus, Fusarium oxysporum, and Rhizoctonia solani. Amoung the four strains, a potent antifungal activity was detected in Cladosporium cucumerinum and Monosporascus cannonballus, not in Fusarium oxysporum, and Rhizoctonia solani. The molecular weight of this lectin isolated as double protein bands by SDS-PAGE was calculated to be 87 kDa and 47 kDa from the relative mobilities compared with those of reference molecular weight markers. The isolated lectin agglutinated human red blood cells (A, B, AB, O) treated with trypsin, and the most activity was found at B. The optimal temperature of isolated lectin was at $30^{\circ}C$. For the thermal stability, lectin was stable at $20-80^{\circ}C$. The optimal pH of this lectin was at 7.2, and showed complete loss below pH 9.0.

Patterns of Tannin Accumulation in Leaves of C-4 Euphorbia maculata (C-4 Euphorbia maculata 엽육조직 내 탄닌물질의 축적 양상)

  • Kim, In-Sun
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.233-241
    • /
    • 2003
  • Patterns of tannin accumulation in leaves of C-4 Euphorbia maculata have been examined using electron microscopy. Tannins, which are secondary metabolite phenolic compounds, were found to be deposited conspicuously in vacuoles of certain tissues regardless of their stage in development. However, patterns of deposit accumulation were distinguishable by their cell type during leaf differentiation. The deposits appeared most concentrated in the concentric bundle sheath cells enclosing veins, while little or no density was detected mostly in the mesophyll cells close to the epidermis. An ultrastructural study revealed that the deposits were restricted to the vacuoles at an early stage of leaf development; during which the vacuoles were almost completely filled with the tanniferous substances. The deposits themselves took different forms ranging from granules to huge globules while expanding leaf blade. As the leaf matured, the deposits accumulated either centripetally adjacent to the inner tangential tonoplast or by penetration into the cytoplasm amongst various cellular organelles, resulting in an extremely dense cytoplasm. Electron micrographs frequently showed the delineation of each organelle by the presence of dense deposits within the cytoplasm. Some large depository vacuoles filled with tannins had a corrugated appearance on the sectioned surface. The pattern and potential role of the deposits have been discussed.

Identification and characterization of the MYC2 gene in relation to leaf senescence response in hybrid poplar (Populus alba × P. glandulosa) (현사시나무에서 MYC2 유전자의 분리 및 노화 지연에 관한 특성 구명)

  • Choi, Hyunmo;Bae, Eun-Kyung;Cho, Jin Seong;Lee, Hyoshin;Choi, Young-Im
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • The vegetation period of trees might be prolonged by the delay of the leaf senescence in autumn. Thus, we focused on the generation of senescence-delayed transgenic trees to enhance biomass production. The PagMYC2, a gene containing the basic helix-loop-helix domain, was selected as a candidate for a senescence-delayed transgenic tree. The PagMYC2 gene was specifically induced after treatment with phytohormone jasmonic acid, and upregulated by abiotic stresses such as salinity, osmotic pressure and a low temperature. The constitutive overexpression of the PagMYC2 delayed the leaf senescence and inhibited chlorophyll degradation in the transgenic poplars. Leaf senescence analysis was performed in the leaf tissues of the PagMYC2-over-expression transgenic poplars. The transgenic poplars exhibited higher photochemical efficiency than did a wild type plant under a short-day condition (6 hours light/18 hours darkness) or a low temperature condition ($15^{\circ}C$) that was similar to the weather conditions of autumn. These results suggest that the PagMYC2 is a useful genetic resource to improve biomass production, which is able to sustain growth with senescence-delayed leaves for a long time in autumn.

Changes in Carbohydrate, Phenolics and Polyamines of Pepper Plants under Elevated-UV-B Radiation (자외선 조사에 의한 고추 유묘의 탄수화물 합성과 항산화물질 변화)

  • Sung, Jwa-Kyung;Lee, Su-Yeon;Park, Jae-Hong;Lee, Sang-Min;Lee, Yong-Hwan;Choi, Du-Hoi;Kim, Tae-Wan;Song, Beom-Heon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Pepper plants (Capsicum annuum, cv. Manitta) were subjected to different intensities of UV-B radiation to understand alterations of primary- and secondary-metabolism such as carbohydrates, phenolic compounds and polyamines. UV-B doses with a UV-B lamp ($1.2W\;m^{-2}$) were adjusted between 0 to 9 hr. The soluble sugars and starch contents in pepper leaves were highly influenced by UV-B treatment. The soluble sugars altered from $6.7mg\;g^{-1}\;fw$ to $5.2mg\;g^{-1}\;fw$ after 9 hrs of UV-B exposure. The starch contents after 3 hrs of UV-B exposure changed from $17.7mg\;g^{-1}\;fw$ to $12.3mg\;g^{-1}\;fw$ and then remained unchanged. The absorbance of UV-absorbing compounds reached initially maximum at all wavelengths read. On the basis of this result, we analyzed total phenolics, anthocyanin and simple free phenolic acids. Anthocyanin and free phenolic acids responded sensitively with a steady increase during UV-B treatment, although anthocyanin contents declined highly after 3 hrs of treatment. Whereas, there is no alteration of total phenolics (as gallic acid equivalent) caused by UV-B. Free polyamine levels in leaves increased rapidly and highly when UV-B was treated. The most prominent changes in polyamine induction were putrescine and spermidine (+ 70 %) after 3 hrs and spermine (+ 150 %) after 6 hrs.

The Assessment of Ultraviolet Radiation in Vegetable Growth (식물생장(植物生長)에 미치는 자외선(紫外線)의 효과(效果))

  • Kim, Hyeong-Ok;Moon, Doo-Khil;Lee, Shin-Chan;Kim, Yong-Ho;Song, Pill-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 1984
  • The terrestrial UV flux rapidly increased in late spring, as measured by the chemical actinometry at two elevations (near sea level and 1,100m above sea level) on Jeju Island. More intense UV fluxes were observed at higher altitudes. Any harmful effects of solar UV-B on the growth of soybean were not detected in UV-B-exclusion experiment. To ascertain the effect of UV radiation on vegetative growth, intact (㏖ wt 124000) and large (${\sim}120000$) phytochromes were irradiated with UV-B radiation. In intact phytochrome, the Pfr form accounts for 60% of the total phytochrome under stationary state conditions, whereas it accounts for 50% in large phytochrome. Calculated quantum yields for the forward and the backward phototransformations of phytochrome by UV were ${\phi}r=0.016$ and ${\phi}fr=0.010$ in intact phytochrome, and ${\phi}r={\phi}fr=0.012$ in large phytochrome, respectively.

  • PDF

Tritium Distribution in Some Environmental Samples-Rices, Chinese Cabbages and Pine Needles in Korea (국내 환경시료(쌀, 채소, 솔잎) 중 삼중수소의 분포)

  • Kim, Chang-Kyu;Cho, Yong-Woo;Han, Man-Jung;Pak, Chan-Kirl
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.25-35
    • /
    • 1992
  • To evaluate tritium level in some environmental samples, tissue-free water tritium (TFWT) and tissue-bound tritium (TBT) were analyzed in rices, chinese cabbages and pine needles collected at 12 locations in Korea. The TFWT was recovered by freeze-drying of the samples and the TBT was obtained in the form of water by combustion of the dried samples. Tritium was measured by liquid scintillation counter. The concentrations of TFWT were in the range of $0.96{\sim}3.96 Bq/1,\; 0.83{\sim}3.40 Bq/1\;and\;1.02{\sim}3.01 Bq/1$ in rices, chinese cabbages and pine needles, respectively. The mean specific activity ratios (TBT/TFWT) were 0.94, 1.71 and 1.39 in rices, chinese cabbages and pine needles, respectiviely. This excess TBT in the samples may be attributed to the fact that the residence time of TBT in the plant is longer than that of TFWT. The specific activity ratio depends on the plant species, the exposed time to tritiated atmosphere, atmospheric moisture, temperature and diffusion factor.

  • PDF

Uranium Levels in Soil and Plant, and Estimation of Its Intake by the Residents at the Uranium Deposited Area (우라늄광 부근에서 우라늄의 토양 및 식물체중 함량과 주민들에 의한 체내 집적량추정)

  • U, Zang-Kual;Song, Ki-Joon;Kim, Tai-Soon
    • Applied Biological Chemistry
    • /
    • v.22 no.4
    • /
    • pp.221-226
    • /
    • 1979
  • The soils and plants were sampled from 26 sites of Deogpyeongri, Goisangun, which had been found to be one of the uranium deposit areas. Uranium levels of the samples were determined and the amount of uranium intake by the residents through the food-chains was estimated. The average uranium concentration of Deogpyeongri soils was 15.5ppm with a range of from 4.9 to 43.6ppm showing rather higher values than those of control area, Yangjugun and Icheongun, Gyeonggi-do. The average uranium content of the plant samples from Deogpyeongri was 0.69ppm, about twice the uranium concentration of the control samples. The daily intake of uranium by an adult lived on the agricultural food stuffs produced in Deogpyeongri, was estimated to be about $247{\mu}g$, eqivalent to $0.83{\times}10^{-4}{\mu}Ci$, which is much higher activity compared to the daily intake of uranium by New York citizen, $1.3{\mu}g$. However the calculated uranium level accumulated in the human body of Deogpyeong area was $2.03{\times}10^{-4}{\mu}Ci$ which is still lower than $0.2{\mu}Ci$, the maximum permissible burden in total body recommended by the ICRP.

  • PDF

Antioxidative Effect and Melanogenesis of Nelumbo nucifera Stamen Extract on Cultured Human Skin Melanoma Cells Injured by Hydrogen Peroxide (연꽃수술추출물이 과산화수소로 손상된 배양 인체피부흑색종세포에 대한 항산화효과 및 멜라닌화에 미치는 영향)

  • Kim, Myoung-Seoup;Park, Yun-Jum;Sohn, Young-Woo
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • To examine the antioxidative effect and melanogenesis of Nelumbo nucifera stamen (NNS) extract on hydrogen peroxide $H_2O_2$ induced cytotoxicity in cultured human skin melanoma cells (SK-MEL-3), cell adhesion activity (CAA), tyrosinase inhibitory activity and total amount of melanin synthesis were measured by colorimetric assay. In this study, $H_2O_2$ significantly decreased CAA, and $CAA_{50}$ value of $H_2O_2$ was determined at 30 uM. In the antioxidative effect, NNS extract increased cell adhesion activity which was decreased by $H_2O_2$ induced cytotoxicity, and also, tyrosinase activity and total amount of melanin were decreased by NNS extract. These results suggested that $H_2O_2$ was highly toxic on cultured human skin melanoma cells and NNS extract showed the antioxidative and inhibitory effect of melanogenesis by the increased CAA, and the decresed tyrosinase activity and total amount of melanin synthesis.

Isolation and Characterization of a Nitric Oxide-induced Gene in Sweetpotato (고구마에서 질소 유도성 유전자의 분리 및 특성분석)

  • Lee, Il Hwan;Shim, Donghwan;Lee, Kang Lok;Nam, Ki Jung;Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.631-636
    • /
    • 2019
  • A new nitric oxide-induced (NOI) gene was isolated by screening ESTs from a cDNA library of dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). The 720 bp cDNA fragment, IbNOI, was sequenced, from which a 77 amino acid residue protein was deduced. A search of the protein BLAST database identified significant similarity to other plant NOI protein sequences. Quantitative RT-PCR analysis revealed diverse expression patterns of IbNOI in various tissues of the intact sweetpotato plant, and in leaves exposed to different stresses. The IbNOI gene was highly expressed in storage roots and suspension-cultured cells. In leaf tissues, IbNOI showed strong expression during sodium nitroprusside (SNP)-induced NO accumulation and chemical stress treatments. Expression of IbNOI was also induced under various abiotic stress conditions, such as dehydration, salt, and bacterial pathogen infection. These results suggest that IbNOI is involved in plant responses to diverse abiotic stresses and pathogen infection through a NO-related pathway.