• Title/Summary/Keyword: 식물성플랑크톤

Search Result 437, Processing Time 0.033 seconds

The Limnological Survey of a Coastal Lagoon in Korea (4); Lake Songji (동해안 석호의 육수학적 조사 (4); 송지호)

  • Kwon, Sang-Yong;Heo, Woo-Myung;Lee, Sang-Ha;Kim, Dong-Jin;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.461-474
    • /
    • 2005
  • Physicochemical parameters, plankton community structure, and sediment were surveyed from 1988 to 2002, at two months interval, in a eutrophic coastal lagoon (Lake Songji, Korea). The lake basin is separated from the sea by a narrow sand dune, and a shallow sill divides the lake basin into two sub-basins. The stable stratifications and chemoclines are maintained all through the year at 1-2 m depth. DO was often very low (<1 $mgO_2\;{\cdot}\;L^{-1}$) in the monimolimnion. Secchi disc transparency was in the range of 0.5-2.7 m. TP, TN, and Chl. a concentration in the mixolimnion were 0.015-0.396 $mgP\;{\cdot}\;L^{-1}$), 0.223-3.521 $mgN\;{\cdot}\;L^{-1}$, and 0.5-129.8 mg ${\cdot}\;m^{-3}$, respectively. TSI was in the eutrophic range of 54 to 62. Sediment was composed of silt and coarse silt. COD, TP, and TN content of the sediment were 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$, 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ and, 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$, respectively. The 49 phytoplankton species were identified. The maximum phytoplankton abundance obscured the lake in September 2001 (max. density: 23,350 cells ${\cdot}\;mL^{-1}$. The Chlorophyte Schroederia judayi was dominant species in summer (max. density: 20,417 cells ${\cdot}\;mL^{-1}$). The lake showed unique limnological features of a brackish lagoon in respect to biological community, chemical characteristics, and physical phenomena.

Influences of Seasonal Rainfall on Physical, Chemical and Biological Conditions Near the Intake Tower of Taechung Reservoir (대청호의 취수탑 주변의 이화학적${\cdot}$생물학적 상태에 대한 계절강우의 영향)

  • Seo, Jin-Won;Park, Seok-Soon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.327-336
    • /
    • 2001
  • Physical, chemical, and biological parameters were measured during the period from July 1993 to August 1994 near the Munui intake tower of Taechung Reservoir to evaluate effects of nutrients and suspended solids on algal chlorophyll-a and water clarity. Large amounts of precipitation during summer 1993 produced minimum conductivity ($88\;{\mu}S/cm$), minimum TN : TP (<40), and maximum total phosphorus (TP;$59\;{\mu}g/L$) and resulted in a chlorophyll-a peak ($79\;{\mu}g/L$) and minimum transparency (<1.5 m) among the seasons. At the same time, ratios of volatile suspended solids (VSS): non-volatile suspended solids (NVSS) were maximum (13.0),indicating that the reduced transparency was mainly attributed to biogenic turbidity in relation to phytoplankton growth. In contrast, severe drought in summer 1994 resulted in greater conductivity (>$120\;{\mu}S/cm$), water clarity (%gt;2 m), and lower TP and chlorophyll- a (<$10\;{\mu}g/L$) relative to those of summer 1993. Total phosphorus ($R^2=0.46$, n=59) accounted more variations of chlorophyll- a compared to total nitrogen ($R^2=0,29$, n=59). The mass ratios of TN : TP ranged from 39 to 222 and were strongly correlated with TP (r = -0.80) but not with concentrations of TN (r = 0.05). Ambient nutrient concentrations and TN : TP mass ratios indicated that seasonality of chlorophyll- a was likely determined by concentrations of phosphorus reflected by the distribution of rainfall. It was concluded that reductions of phosphorus during heavy rainfall may provide better water quality for the drinking water in the intake tower.

  • PDF

Comparison of Filtering Abilities of Korean Freshwater Bivalves and Their Filtering Effects on Water Quality (국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향)

  • Kim, Ho-Sub;Choi, Kwang-Hyun;Park, Jung-Hwan;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.92-102
    • /
    • 2002
  • This study was conducted to compare filtering abilities of three species of freshwater mussels (Cobicula fluminea, Corbicula leana and Unio douglasiae) and to evaluate their filter feeding effects on water quality change in experimental enclosure systems. Mussel feeding in both laboratory and enclosure resulted in decrease of particulate material, such as chlorophyll, total P, SS. In the treatment with 600 individuals of mussels, chllorophyll concentration and net primary productivity decreased from $87.3{\pm}4.5\;{\mu}g/L$ and $106.3{\pm}8.8\;{\mu}gC\;L^{-1}\;hr^{-1}$ to nearly the same level as the mussel-free enclosure ($25.0{\pm}0.5\;{\mu}g/L$ and $15.6{\pm}13.3\;{\mu}gC\;L^{-1}\;hr^{-1}$, respectively)(P< 0.05, n = 6, ANOVA). In concert with the decrease of chlorophyll concentration, not only was the transparency enhanced from 0.48 m to 1.2m but also the suspended solids and total phosphorus decreased from $22.0{\pm}1.0\;mg/L$ to $7.5{\pm}0.5\;mg/L$ and $133{\pm}0.8\;{\mu}g/L$ to $70{\pm}0.0\;{\mu}g/L$, respectively (P<0.001, $r^2$>0.71, n = 11). Although slight decrease of SRP concentration and the increase of inorganic nitrogen ($NH_3-N$ and $NO_2-N$) were observed in the mussel addition enclosure, there was no statistical difference between two enclosures. Based on the filtering rate on phytoplankton and nutrient release rate in forms of feces and pseudofeces, Corbicula leana appeared to be the most efficient filter-feeder among three mussel species. These results inidicate that Cobicula play an important role in controlling particulate sestons and thus it could be applied as a biocontroler for the water quality management in lakes and reservoirs with algal blooms.

Removal of $^{210}Po$ and $^{234}Th$ from Seawater at the East-southern Coastal Region of Korea Peninsula in Spring (춘계 한국 동해남부 연안해역에서 해수중 $^{210}Po$$^{234}Th$의 제거)

  • LEE Haeng-Pil;YANG Han-Soeb;KIM Kee-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.332-344
    • /
    • 1996
  • The vertical profiles of the natural $^{210}Po,\;^{210}Pb\;and\;^{234}Th$, activities were measured at the upper 150 m or 200 m of water column from west-east intersection in the east-southern coastal area of the Korea Peninsula during the period from 26 to 29 April 1994 to compare the removal rates (residence time) and removal processes for $^{210}Po\;and\;^{234}Th$. At the inshore stations, the $^{210}Po$ activity was generally higher in the thermocline and its under layer than in the surface mixed layer, while represented the reversed pattern at the offshore stations. However, the $^{210}Pb$ activity decreased generally with depth. Also, the activity of $^{210}Po$ relative to its parent $^{210}Pb$ was deficient in the water column above the main thermocline, but was slightly excess or close to equilibrium in the thermocline and its under layer. The vertical profiles for the activity of $^{210}Pb$ relative to its parent $^{226}Ra$ showed the reversed pattern with the vertical variation of $^{210}Po$ excess (or deficiency). The $^{234}Th$ activity was significantly lower in the surface mixed layer and thermocline than in the deeper layer. The residence time of $^{210}Po$ ranged from 1 to 4 years at the five stations except station E8 that showed yet long residence time (approximately 10 years). The long residence time at the station E8 may resulted from the thicker surface mixed layer and subsequent the vertical mixing of $^{210}Po$ which was recycled in the lower surface mixed layer compared to at the other stations. Also, the residence time of $^{210}Po$ was shorter at the inshore stations than at the offshore stations. However, the residence time of $^{234}Th$ ranged from 52 to 74 days at all station without the significant variation, was very much shorter relative to the residence time of $^{210}Po$. The correlation between the removal rate of dissolved $^{234}Th$ and the concentration of total suspended matter (TSM) was generally positive. Therefore, it seems that the major route of the removal mechanism of $^{234}Th$ from seawater in the surface mixed layer is via adsorption onto suspended particle surfaces (most likely inorganic particles) and subsequent settling to the bottom layer. Between the removal rate of dissolved $^{210}Po$ and the concentration of chlorophyll-a was positively good correlation. Consequently, most likely the removal of $^{210}Po$ may be occurred by uptake to organisms (mainly such as planktonic debris or fecal pellets) and subsequent settling.

  • PDF

Regeneration Processes of Nutrients in the Polar Front Area of the East Sea II. Distribution of Particulate Organic Carbon and Nitrogen in Winter, 1995 (동해 극전선의 영양염류 순환과정 II. 1995년 동계 입자태 유기탄소 및 유기질소의 분포)

  • YANG Han-Soeb;MOON Chang-Ho;OH Seok-Jin;LEE Haeng-Pil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.442-450
    • /
    • 1997
  • The chemical properties of water masses were investigated at 33 stations of the southeastern last Sea in February, 1995 on board R/V Tam-Yang. The water masses were not clearly distinguished due to the vortical mixing in winter. However, on the basis of the T-S and $T-O_2$ diagrams, water masses in the study area were divided into five groups (Type I, Type II, Type III, Type IV, Type V). (1) $>9.0^{\circ}C,\;>34.35\;psu,\;5.08\~5.60m\ell/\ell$ at Type I, (2) $6.0\~9.0^{\circ}C,\;34.15\~34.35\;psu,\;5.60\~5.90\;m\ell/\ell$ at Type II, (3) $4.0\~6.0^{\circ}C,\;34.00\~34.15\;psu,\;>5.90m\ell/\ell$ at Type III, (4) $1.5\~4.0^{\circ}C,\;34.00\~34.05\;psu,\;5.40\~5.90\;m\ell/\ell$ at Type IV, (5) $<1.5^{\circ}C,\;34.05\~34.07\;psu,\;4.80\~5.40\;m\ell/\ell$ at Type V. In the vertical profiles of nutrients, the concentrations were very low in the surface layer and increased rapidly with depth. The highest concentrations occurred in Type IV, while the concentrations in Type I were the lowest. The N/P ratios were less than Redfield ratio, indicating that nitrogenous nutrients were the limiting factor tor phytoplankton growth. The concentrations of POC and PON were in the range of $0.49\~20.03\;{\mu}g-at/\ell\;and\;0.09\~5.34\;{\mu}g-at/\ell$, respectively. The relatively high concentration occured in the surface layer of inner shore, showing that the concentration at each water mass followed the order Type I > Type II > Type III > Type IV > Type V, respectively. The C:N ratio in particulate organic matter was lower than the values reported in other region due to relatively high concentrations of PON in the study area. Relatively high ratios of POC to chlorophyll $\alpha$ during the study periods indicate that non-living detritus comparised most of the POC in the study area.

  • PDF

Food Sources of the Ascidian Styela clava Cultured in Suspension in Jindong Bay of Korea as Determined by C and N Stable Isotopes (탄소 및 질소안정동위원소 조성에 의한 남해안 진동만 양식 미더덕의 먹이원 평가)

  • Moon, Changho;Park, Hyun Je;Yun, Sung Gyu;Kwak, Jung Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.4
    • /
    • pp.302-307
    • /
    • 2014
  • To examine the trophic ecology of the ascidian Styela clava in an aquaculture system of Korea, stable carbon and nitrogen isotopes were analyzed monthly in S. clava, coarse ($>20{\mu}m$, CPOM) and fine particulate organic matters ($0.7<<20{\mu}m$, FPOM). CPOM (means: $-18.5{\pm}1.2$‰, $9.3{\pm}0.7$‰) were significantly higher ${\delta}^{13}C$ and ${\delta}^{15}N$ values than those ($-20.5{\pm}1.5$‰, $8.4{\pm}0.5$‰) of FPOM. S. clava had mean ${\delta}^{13}C$ and ${\delta}^{15}N$ values of $-18.9({\pm}1.7)$‰ and $11.6({\pm}0.7)$‰, respectively. S. clava were more similar to seasonal variations in ${\delta}^{13}C$ and ${\delta}^{15}N$ values of FPOM than those of CPOM, suggesting that they rely largely on the FPOM as a dietary source. In addition, our results displayed that the relative importance between CPOM and FPOM as dietary source for the ascidians can be changed according to the availability of each component in ambient environment, probably reflecting their feeding plasticity due to non-selective feeding irrespective of particle size. Finally, our results suggest that dynamics of pico- and nano-size plankton (i.e., FPOM) as an available nutritional source to S. clava should be effectively assessed to maintain and manage their sustainable aquaculture production.

The Spatio-temporal Distribution of Organic Matter on the Surface Sediment and Its Origin in Gamak Bay, Korea (가막만 표층퇴적물중 유기물량의 시.공간적 분포 특성)

  • Noh Il-Hyeon;Yoon Yang-Ho;Kim Dae-Il;Park Jong-Sick
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.1-13
    • /
    • 2006
  • A field survey on the spatio-temporal distribution characteristics and origins of organic matter in surface sediments was carried out monthly at six stations in Gamak Bay, South Korea from April 2000 to March 2002. The range of ignition loss(IL) was $4.6{\sim}11.6%(7.1{\pm}1.6%)$, while chemical oxygen demand(CODs) ranged from $12.25{\sim}99.26mgO_2/g-dry(30.98{\pm}19.09mgO_2/g-dry)$, acid volatile sulfide(AVS) went from no detection(ND)${\sim}10.29mgS/g-dry(1.02{\pm}0.58mgS/g-dry)$, and phaeopigment was $6.84{\sim}116.18{\mu}g/g-dry(23.72{\pm}21.16{\mu}g/g-dry)$. The ranges of particulate organic carbon(POC) and particulate organic nitrogen(PON) were $5.45{\sim}23.24 mgC/g-dty(10.34{\pm}4.40C\;mgC/g-dry)$ and $0.71{\sim}2.99mgN/g-dry(1.37{\pm}0.58mgN/g-dry)$, respectively. Water content was in the range of $43.1{\sim}77.6%(55.8{\pm}5.6%)$, and mud content(silt+clay) was higher than 95% at all stations. The spatial distribution of organic matter in surface sediments was greatly divided between the northwestern, central and eastern areas, southern entrance area from the distribution characteristic of their organic matters. The concentrations of almost all items were greater at the northwestern and southern entrance area than at the other areas in Gamak Bay. In particular, sedimentary pollution was very serious at the northwestern area, because the area had an excessive supply of organic matter due to aquaculture activity and the inflow of sewage from the land. These materials stayed longer because of the topographical characteristics of such as basin and the anoxic conditions in the bottom seawater environment caused by thermocline in the summer. The tendency of temporal change was most prominently in the period of high-water temperatures than low-water ones at the northwestern and southern entrance areas. On the other hand, the central and eastern areas did not show a regular trend for changing the concentrations of each item but mainly showed a higher tendency during the low-water temperatures. This was observed for all but AVS concentrations which were higher during the period of high-water temperature at all stations. Especially, the central and eastern areas showed a large temporal increase of AVS concentration during those periods of high-water temperature where the concentration of CODs was in excess of $20mgO_2/g-dry$. The results show that the organic matters in surface sediments in Gamak Bay actually originated from autochthonous organic matters with eight or less in average C/N ratio including the organic matters generated by the use of ocean, rather than terrigenous organic matters. However, the formation of autochthonous organic matter was mainly derived from detritus than living phytoplankton, indicated the results of the POC/phaeopigment ratio. In addition, the CODs/IL ratio results demonstrate that the detritus was the product of artificial activities such as dregs feeding and fecal pellets of farm organisms caused by aquaculture activities rather than the dynamic of natural ocean activities.

  • PDF

Effect of a Floating Photovoltaic System (FPV) at Chungju Dam (Cheongpung Lake) on Water Quality (충주댐(청풍호) 수상태양광 시설이 호수 수질에 미치는 영향)

  • Kim, Hak Jun;Kwak, Suhknam;Yoon, Min;Kim, Il-Kyu;Kim, Young-Sung;Kim, Dong-sub
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.293-305
    • /
    • 2019
  • In this study we investigated the effect of a floating photovoltaic (FPV) system in Cheongpung Lake on water quality. The FPV with a tilt angle of 33° covered ca. 0.04% of surface area (97 ㎢) of Chungju Lake. The water qualities of the whole lake before and after installation of FPV were first compared. DO, BOD, TOC, and Chl-a of the whole lake were increased, while conductivity decreased after installation period at the significance level of 0.05. This change was probably due to the increased influx of nutrients by 40% resulting from increased precipitation during the same period. We also measured water quality parameters on May and Nov. 2017 at the FPV center (FPVC) and nearby control sites, and compared water quality. The result showed that the FPVC and nearby sites were not significantly different (p>0.05), demonstrating that the FPV does not cause a decline of water quality. The water temperature, light intensity, and phytoplankton community were also measured. The water temperature was not different between the sites, while the light intensity decreased to 27~50%. Despite reduced light intensity at FPVC, the phytoplankton standing crops and the number of species were not significantly different (p>0.05). However, in the early November samples, standing crops was significantly higher in FPVC than control with periphytic diatoms belonging to Aulacoseira genus being dominant. This may be due to the temporal water body behavior or local retention of current by FPV system. This study may provide a measure of future installation of a FPV system.

Distribution of Dissolved and Particulate Organic Carbon in the East China Sea in Summer (하계 동중국해에서의 용존 및 입자유기탄소의 분포 특성)

  • Kim, Soo-Kang;Choi, Young-Chan;Kim, Jin-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 2008
  • This study was conducted around the southwest sea areas of Jeju and coastal sea areas of China in August 2003 and September 2004 to research distribution patterns of dissolved inorganic nutrients, dissolved and particulate organic carbon. Distribution patterns of nutrients in the East China Sea in summer were shown to be influenced by water masses and phytoplankton. Water masses in the East China Sea in summer, except for coastal sea areas of china, showed less vertical mixing process, causing decline in the inflow of nutrients to surface water. Bottom water, however, showed high concentration, since nutrients made by dissolved organic matters from surface water were accumulated at the bottom. Sea areas with high concentration of chlorophyll a showed low concentration of nutrients and vice versa, indicating biological activities control dissolved inorganic nutrients. The distribution of dissolved organic carbon didn't show any correlation with salinity, temperatures, and water masses. Areas around the river mouth of the Changjiang showed high concentration of dissolved organic carbon more than $100{\mu}M$, but relatively low concentration in the southwest sea areas of Jeju, indicating that the river mouth of the Changjiang coastal water has a great influence on dissolved organic carbon in the East China Sea. Distribution patterns of particulate organic carbon in the research areas showed the highest concentration of average $9.23{\mu}M$ in coastal areas of China influenced by the river mouth of the Changjiang coastal water. By comparison, the concentration was relatively low at $3.04{\mu}M$ in the southeast sea areas of Jeju on which the Taiwan warm current has influence, and was $7.23{\mu}M$ in the central sea areas of Jeju. Thus, there is much indication that the river mouth of the Changjiang coastal water serves as a supplier of particulate organic carbon along with autogenous source. In general, if particulate organic carbon has a high correlation with the concentration of Chlorophyll a, it is thought that it is originated from autogenous source. However, the southeast sea areas of Jeju shows low salinity below 30, therefore it is proper to think that its origin is terrestrial source rather than that of autogenesis.

  • PDF

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF