• Title/Summary/Keyword: 식각 공정

Search Result 711, Processing Time 0.031 seconds

고밀도 유도결합형 $Cl_2/BCL_3/Ar$ 플라즈마를 이용한 sapphire의 식각 특성

  • 성연준;이용혁;김현수;염근영;이재원;채수희;박용조
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.31-31
    • /
    • 2000
  • Al2O3는 높은 화학적, 열적 안정성으로 인하여 미세전자 산업에서 절연막이나 광전자소자의 재료로써 널리 이용되고 있다. 특히, 사파이어는 고위도의 LED, 청색 LD의 재료인 GaN 계열의 III-Nitride 물질을 성장시킬 때 필요한 기판으로 보편적으로 사용되고 있다. 이러한 GaN계열의 광소자 제조에서 사파이어 기판을 적용시 지적되는 문제점들 중의 하나는 소자제조 후 사파이어의 결정 구조 및 높은 경도에 의해 나타나는 cutting 및 backside의 기계적 연마가 어렵다는 것이다. 최근에는 이온빔 식각이나 이온 주입 후 화학적 습식 시각, reactive ion etching을 통한 사파이어의 건식 식각이 소자 분리 및 backside 공정을 우해 연구되고 있다. 그러나 이러한 방법을 이용한 사파이어의 식각속도는 일반적으로 15nm/min 보다 작다. 높은 식각율과 식각후 표면의 작은 거칠기를 수반한 사파이어의 플라즈마 식각은 소자 제조 공정시 소자의 isolation 및 lapping 후 연마 공정에 이용할 수 있다. 본 연구에서는 평판 유도결합형 플라즈마를 이용하여 Cl2/BCL3/Ar 의 가스조합, inductive power, bias voltage, 압력, 기판온도의 다양한 공정 변수를 통하여 (0001) 사파이어의 식각특성을 연구하였다. 사파이어의 식각속도는 inductive power, bias voltage, 그리고 기판 온도가 증가할수록 증가하였으며 Cl2에 BCl3를 50%이하로 첨가할 때 BCl3 첨가량이 증가할수록 식각속도 및 식각마스크(photoresist)와의 식각선택비가 증가하는 것을 관찰하였다. 또한, Cl3:BCl3=1:1의 조건에 따라 Ar 첨가에 따른 식각속도 및 표면 거칠기를 관찰하였다. 본 연구의 최적 식각조건인 40%Cl2/40%BCl3/20%Ar, 600W의 inductive power, -300V의 bias voltage, 30mTorr의 압력, 기판온도 7$0^{\circ}C$에서 270nm/min의 사파이어 식각속도를 얻을수 있었다. 그리고 이러한 식각조건에서 표면의 거치기를 줄일수 있었다. 사파이어 식각은 보편적인 사파이어 lapping 공정시 수반되어 형성된 표면의 거치기를 줄이기 위한 마지막 공정에 응용될수 있다. 사파이어의 식각시 나타나는 식각 부산물은 플라즈마 진단방비인 optical emission spectroscopy (OES)를 통하여 관찰하였고, 식각시 사파이어의 표면성분비 변화 및 표면의 화학적 결합은 X-ray photoelectron spectroscopy(XPS)를 사용하여 측정하였다. 시각 전, 후의 표면의 거칠기를 scanning electron microscopy(SEM)을 통하여 관찰하였다.

  • PDF

박막 표면의 플라즈마 damage에 대한 식각 물성 연구

  • Lee, Jae-Hun;Kim, Su-In;Kim, Hong-Gi;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.303.2-303.2
    • /
    • 2016
  • 현재 플라즈마를 이용한 기술은 반도체, 태양광 발전, 디스플레이 등 산업의 전반적인 분야에서 특히 반도체 공정을 이용한 산업에서는 핵심적인 기술이다. 반도체 공정 중에서 박막 증착과 식각 분야에서 플라즈마를 사용한 기술은 매우 높은 가치를 지니고 있다. 중요한 플라즈마 연구로는 이론적 접근을 통한 플라즈마 소스 개발과, 기 개발된 플라즈마 소스를 적용하여 반도체 공정에 적용함으로써 최적의 조건을 찾아내며, 그에 대한 메커니즘을 연구하는 분야로 크게 분리할 수 있다. 따라서 이러한 플라즈마 기술이 발달함에 따라 nano-scale의 연구 또한 상당히 중요한 부분으로 자리 잡고 있다. 본 실험에서는 RF magnetron sputter를 사용하고 질소 유량을 0.5 sccm으로 고정하여 AlN 박막을 증착하였다. 이후 상압 플라즈마를 이용하여 식각을 진행하였다. AlN 박막 전체 표면에 대하여 3초 및 6초간 식각을 진행하였다. 이후 Nano-Indenter를 사용하여 $100{\sim}7000{\mu}N$까지 힘을 증가시키며 측정하였다. 3초간 식각을 진행한 시료의 경우 압입 깊이 대비 Hardness 그래프에서 약 40 ~ 100 nm 까지 약 2.5 GPa 정도의 차이가 발생하였고 6초간 식각을 진행한 시료의 경우 압입 깊이 대비 Hardness의 그래프에서 약 40 ~ 130 nm 까지 약 1 GPa 정도의 차이가 발생함을 확인하였다. 이후 WET-SPM 장비를 사용하여 AFM 모드를 이용하여 박막 표면이 거칠기를 확인하였다. 플라즈마 식각공정을 거치지 않은 시료의 경우 박막의 거칠기는 7.77 nm로 측정되었고 3초간 플라즈마 식각공정을 거친 시료의 경우 6.53 nm, 6초간 플라즈마 식각공정을 거친 시료의 경우 8.45 nm로 나타남을 확인할 수 있었다. 이와 같은 결과들로부터 플라즈마 식각공정은 박막의 표면에도 영향을 미치지만 박막 내부 일정 부분까지 영향을 받는 것을 확인하였다.

  • PDF

유기막 위에 증착된 저온 ITO(Indium Tin Oxide) 박막의 식각특성

  • 김정식;김형종;박준용;배정운;이내응;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.99-99
    • /
    • 1999
  • 투명전도막인 Ito(Indium Tin Oxide)는 flat panel display 와 solar cell 같은 optoelectronic 이나 microelectronic device에서 널리 이용되어 지고 있다. 현재 상용화되고 있는 거의 대부분의 ITO 박막은 sputtering법에 의해 제조되고 있으나 공정상의 이유로 15$0^{\circ}C$이상의 기판온도가 요구되어진다. 그런, 실제 display device 제조공정에서는 비정질 실리콘 박막이나 유기막 위에 ITO박막을 제작할 필요성이 증대되어 지고 있고, 또한 다른 전자소자에 있어서도 상온 ITO 박막 형성 공정에 대한 필요성이 증대되고 있다. 이러한 이유로 본 실험에서는 IBAE(Ion Beam Assisted Evsporation)을 이용하여 저온 ITO박막을 유기막 위에 증착하는 공정에 대한 연구를 수행하였다. 이렇게 증착된 ITO 박막의 결정성은 비정질이었다. 또한, 모든 display device 제작에는 식각공정이 필수인데 기존에 사용되고 있는 wet etching 법은 등방성 식각특성 때문에 미세 pattern 형성에 부적합?, 따라서 비등방성 식각에 용이한 plasma etching법을 사용하여 저온 증착된 ITO 박막의 식각특성을 알아보았다. 실험에 사용된 식각장비는 자장 강화된 유도결합형 플라즈마 식각장비(MEICP)를 사용하였으며, 13.56MHz의 RF power를 사용하였다. 식각조건으로 source power는 600W~1000W, 기판 bias boltage는 -100V~-250V를 가하였으며, Ar, CH4, O2, H2, BCl3의 식각 gases, 5mTorr~30mTorr의 working pressure 변화 그리고 기판 온도에 따른 식각특성을 관찰하였다. ITO 가 증착된 기판으로는 유기물 중 투명전도성 박막에 기판으로서 사용가능성이 클 것으로 기대되어지는 PET(polyethylene-terephtalate), PC(polycarbonate), 아크릴을 사용하여 기판 변화가 식각특성에 미치는 영향에 대해서 각각 관찰하였다. 식각속도의 측정은 stylus profiler를 이용하여 측정하였으며 식각후에 표면상태는 scanning electron spectroscopy(SEM)을 이용하여 관찰하였다.

  • PDF

RIE Damage Remove Etching Process for Solar Cell Surface Texturing Using the TMAH Etching

  • O, Jeong-Hwa;Gong, Dae-Yeong;Jo, Jun-Hwan;Jo, Chan-Seop;Yun, Seong-Ho;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.584-584
    • /
    • 2012
  • 결정형 실리콘 태양전지 공정 중 표면 texturing 공정은 표면에 요철을 형성시켜 반사되는 빛 손실을 줄여서, 증가된 빛 흡수 양에 의해 단락전류(Isc)를 증가시키는데 그 목적이 있다. 표면 texturing 공정은 습식 식각과 건식 식각에 의한 방법으로 나눌 수 있다. 습식 식각은 KOH, TMAH, HNA 등의 실리콘 식각 용액을 사용하여 공정상의 위험도가 크고, 사용 후 용액의 폐기물에 의한 환경오염 문제가 있다. 건식 식각은 습식 식각과 달리 폐기물의 처리가 없고 미량의 가스를 이용한다. 그리고 다결정 실리콘 웨이퍼처럼 불규칙적인 결정방향에도 영향을 받지 않는 장점을 가지고 있어서 건식 식각을 이용한 표면 texturing 공정에 관한 많은 연구가 진행되고 있으며, 특히 RIE(reactive ion etching)를 이용한 태양전지 texturing 공정이 가장 주목을 받고 있다. 하지만 기존의 RIE를 이용하여 표면 texturing 공정을 하게 되면 500 nm 이하의 needle-like 구조의 표면이 만들어진다. Needle-like 구조의 표면은 전극을 형성할 때에 접촉 면적이 좁기 때문에 adhesion이 좋지 않은 것과 단파장 대역에서 광 손실이 많다는 단점이 있다. 본 논문에서는 기존의 RIE texturing의 단점을 보완하기 위해 챔버 내부에 metal-mesh를 장착한 후 RIE를 이용하여 $1{\mu}m$의 피라미드 구조를 형성하였고, RIE 공정 시 ion bombardment에 의한 표면 손상을 제거(RIE damage remove etching)하기 위하여 10초간 TMAH(Tetramethyl -ammonium hydroxide, 25 %) 식각 공정을 하였다.

  • PDF

30 um pitch의 Probe Unit용 Slit Etching 공정 및 특성 연구

  • Kim, Jin-Hyeok;Sin, Gwang-Su;Kim, Seon-Hun;Kim, Hyo-Jin;Go, Hang-Ju;Han, Myeong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.257-257
    • /
    • 2010
  • 디스플레이 산업의 발달로 화상 영상폰, 디지털 카메라, MP4, PMP, 네비게이션, LCD TV등의 가전 제품의 수요증가에 따라 이에 장착되는 LCD 패널의 생산력 향상과 원가 절감을 위한 검사 기술이 요구되고 있다. LCD 검사를 위한 Probe unit은 미세전기기계시스템(MEMS) 공정을 이용하여 제작된다. LCD 검사용 Probe unit는 LCD 가장자리 부분에 전기적 신호(영상신호, 등 기신호, 색상신호)가 인가되도록 하는 수 십 내지 수 백개의 접속 단자가 고밀도로 배치되는데, 이러한 LCD는 제품에 장착되기 전에 시험신호를 인가하여 화면의 불량여부를 검사하기 위한 점등용 부품으로 50 um 이하의 Pin간 거리를 유지하면서 정확한 Pin Alignment를 요구하는 초정밀 부품이다. 본 연구에서는 반도체용 Si wafer에 마스크 공정 및 slit etching 공정을 적용하여 목표인 30 um pitch의 Probe unit을 개발하기 위해 Deep Si Etching(DRIE) 장비를 이용하여 식각 공정에 따른 특성을 평가하였다. 마스크 공정은 500 um 두께의 양면 연마된 반도체용 Si wafer를 이용하였으며, thick PR을 사용하여 마스킹하여 식각공정을 수행하였다. Si 깊은 식각은 $SF_6$ 가스와 Passivation용으로 $C_4F_8$ 가스를 교대로 사용하여 수직방향으로 깊은 식각이 이루어지는 원리이다. SEM 측정 결과 30 um pitch의 공정 목표에 도달하였으며, 식각공정 결과 식각율 6.2 um/min, profile angle $89.1^{\circ}$로 측정되었다. 또한 상부 에칭공정과 이면 에칭공정에서 폭과 wall의 간격이 동일하였으며, 완전히 관통된 양면식각이 이루어졌음을 확인하였다. 또한 실제 사용되는 probe unit의 조립에 적합한 slit 공정을 위한 에칭특성을 조사하였다.

  • PDF

반도체 MEMS 공정에 적용하기 위한 micro blaster 식각 특성

  • Kim, Dong-Hyeon;Gang, Tae-Uk;Kim, Sang-Won;Gong, Dae-Yeong;Seo, Chang-Taek;Kim, Bong-Hwan;Jo, Chan-Seop;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.245-245
    • /
    • 2010
  • 최근에 반도체 소자 및 마이크로머신, 바이오센서 등에 사용되는 미세 부품에 대한 연구 개발이 활발히 진행되고 있다. 미세 부품을 제작하기 위한 MEMS 공정은 대표적으로 화학용액을 이용한 습식식각, 플라즈마를 이용한 건식식각 등이 주를 이룬다. Micro blaster는 경도가 강하고 화학적 내성을 가지며 용융점이 높아 반도체 MEMS 공정에 어려움이 있는 기판을 다양한 형태로 식각 할 수 있는 기계적인 식각 공정 기술이라 할 수 있다. Micro blaster의 식각 공정은 고속의 날카로운 입자가 공작물을 타격할 때 입자의 아래에는 고압축응력이 발생하게 되고, 이 고압축 응력에 의하여 소성변형과 탄성변형이 발생된다. 이러한 변형이 발전되어 재료의 파괴 초기값보다 크게 되면 크랙이 발생되고, 점점 더 발전하게 되면 재료의 제거가 일어나는 단계로 이루어진다. 본 연구에서는 micro blaster 장비를 반도체 MEMS 공정에 적용하기 위한 식각 특성에 관하여 확인하였다. Micro blaster 장비와 식각에 사용한 파우더는 COMCO INC. 제품을 사용하였다. Micro blaster를 $Al_2O_3$ 파우더의 입자 크기, 분사 압력, 기판의 종류, 노즐과 기판과의 간격, 반복 횟수, 노즐 이동 속도 등의 공정 조건에 따른 식각 특성에 관하여 분석하였다. 특히 실제 반도체 MEMS 공정에 적용 가능한지 여부를 확인하기 위하여 바이오 PCR-chip을 제작하였다. 먼저 glass 기판과 Si wafer 기판에서의 식각률을 비교 분석하였고, 이 식각률을 바탕으로 바이오 PCR-chip에 사용하게 될 미세 홀과 미세 채널, 그리고 미세 챔버를 형성 하였다. 패턴을 형성하기 위하여 TOK Ordyl 사의 DFR(dry film photoresist:BF-410)을 passivation 막으로 사용하였다. Micro blaster에 사용되는 파우더의 직경이 수${\mu}m$ 이상이기 때문에 $10\;{\mu}m$ 이하의 미세 채널과 미세홀을 형성하기 어려웠지만 현재 반도체 MEMS 공정 기술로 제작 연구되어지고 있는 바이오 PCR-chip을 직접 제작하여 micro blaster를 이용한 반도체 MEMS 공정 기술에 적용 가능함을 확인하였다.

  • PDF

플라즈마 식각공정에서 Radial Basis Function Neural Network Model를 이용한 식각 종료점 검출

  • ShuKun, Zhao;Kim, Min-U;Han, Lee-Seul;Hong, Sang-Jin;Han, Seung-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.262-262
    • /
    • 2010
  • 반도체 제조공정 중 식각공정(Etching)은 웨이퍼표면으로부터 화학적, 물리적으로 불필요한 물질들을 선택적으로 제거하는 방법이다. 식각공정 중 하나인 플라즈마 식각(Plasma etching) 공정에서 오버식각(over-etching) 과언더식각(under-etching) 되는것을피하기위해서통계적인방법을기준으로식각종료점(endpoint)를 결정한다. 본 논문의 목표는 통계적인 분석방법을 이용하지 않고 실시간 식각 데이터(realtime etching data)를 사용해서 식각 종료점을 검출하는 것이다. 식각 데이터는 시계열 데이터(time-series data)이기 때문에 간단한 구조와 적은 계산량으로 빠른 수렴속도와 좋은 안정도를 가진 Radial Basis Function Neural Network's (RBF-NN) 를 이용하여 시계열 모델(time-series model)을 구현 하였다. 광학방사분광기(Optical Emission Spectroscopy: OES)로부터 나온 6개의 데이터 세트중에서 4개의 데이터 세트는 RBF-NN을 학습하는데 사용되고 2개의 데이터 세트는 모델의 성과를 시험해 보기 위하여 사용하였다. 학습을 위한 데이터들은 Matrix화 시켜서 목표값을 설정하여 학습시킨다. 실험한 결과 학습한 RBF-NN 모형이 식각 종료점(endpoint)를 정확하게 검출된다는 것을 보여준다.

  • PDF

펄스 직류 전원 $BCl_3$/He 플라즈마를 이용한 GaAs 건식 식각

  • Choe, Gyeong-Hun;Kim, Jin-U;No, Gang-Hyeon;Sin, Ju-Yong;Park, Dong-Gyun;Jo, Gwan-Sik;Lee, Je-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.159-159
    • /
    • 2010
  • 펄스 직류 전원 $BCl_3$/He 플라즈마를 사용하여 GaAs의 건식 식각을 연구하였다. 공정 변수는 가스 유량 (0~100% $BCl_3$ in $BCl_3$/He), 펄스 파워 ($450{\sim}600\;{\nu}$), 펄스 주파수 (100~250 KHz), 펄스 시간 ($0.4{\sim}1.2\;{\mu}s$)이었다. 식각 공정 후 식각률, 포토레지스트에 대한 식각 선택도, 표면 거칠기는 표면 단차 측정기를 이용하였다. 식각 공정 동안 플라즈마 광 특성 분석은 광학 발광분석기 (Optical emission spectroscopy)를 사용하였다. 실험 후 주사 전자 현미경을 이용, 식각 후 시료의 단면과 표면을 관찰하였다. 실험 결과에 의하면 1) 펄스 파워, 주파수, 시간을 고정 ($500\;{\nu}$, $0.7\;{\mu}s$, 200 KHz)하고 10% He 가스가 혼합되어 있는 조건에서 GaAs의 식각률이 순수한 $BCl_3$를 사용한 것보다 높았다. 이를 통해 식각 공정에서 일정량 이하의 He 혼합은 GaAs 식각률을 증가시키는 시너지효과가 있음을 알 수 있었다. 2) 그러나 약 20% 이상의 He 가스의 혼합은 GaAs의 식각 속도를 저하시켰다. 3) 10% He (9 sccm $BCl_3/1$ sccm He), 200 KHz 펄스 주파수, $0.7\;{\mu}s$ 펄스 시간의 조건에서 펄스 파워가 증가함에 따라 GaAs의 식각률 또한 선형적으로 증가하였다. 4) 특히, $600\;{\nu}$의 파워에서 식각률은 ${\sim}0.5\;{\mu}m/min$로 가장 높았다. 5) 표면 단차 측정기와 전자현미경을 이용하여 식각한 GaAs를 분석한 결과 10% He이 혼합되어 있는 조건에서는 우수한 수직 측벽과 매끈한 표면 (RMS roughness <1 nm)을 관찰할 수 있었다. 6) 10% He이 혼합된 $BCl_3$/He 펄스 직류 플라즈마 식각 후 XPS 분석결과에서도 기준 샘플과 비교하였을 때, 공정 후의 GaAs 표면이 화학적으로 깨끗하며 잔류물이 거의 검출되지 않았다. 위의 결과를 정리하였을 때, 펄스 직류 $BCl_3$/He 플라즈마는 GaAs의 식각에서 매우 우수한 공정 결과를 나타내었다.

  • PDF

마이크로 블라스터를 이용한 태양전지용 재생웨이퍼 제작

  • Jeong, Dong-Geon;Gong, Dae-Yeong;Jo, Jun-Hwan;Jeon, Seong-Chan;Seo, Chang-Taek;Lee, Yun-Ho;Jo, Chan-Seop;Bae, Yeong-Ho;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.376-377
    • /
    • 2011
  • 결정질 실리콘 태양전지 연구에 있어서 가장 중요한 부분은 재료의 저가화와 공정의 단순화에 의한 저가의 태양전지 셀 제작 부분과 고효율의 태양전지 셀 제작 부분이다. 본 논문에서는 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 태양전지용 재생웨이퍼를 제작함으로써 고효율을 가지는 단결정 실리콘 웨이퍼를 저 가격에 생산하기 위한 것이다. 특히 마이크로 블라스터를 이용하여 폐 실리콘 웨이퍼를 가공 할 때 표면에 생성되는 요철은 기존 태양전지 셀 제작에서 텍스쳐링 공정과 같은 표면 구조를 가지게 됨으로써 태양전지 셀에 제작 공정을 줄일 수 있는 효과도 가지게 된다. 마이크로 블라스터는 챔버 내에 압축된 공기나 가스에 의해 가속 된 미세 파우더들이 재료와 충돌하면서 재료에 충격을 주고 그 충격에 의해 물질이 식각되는 기계적 건식 식각 공정 기술이다. 이러한 물리적 충격을 이용하는 마이크로 블라스터 공정은 기존 재생웨이퍼 제작 공정 보다 낮은 재처리 비용으로 간단하게 태양전지용 재생웨이퍼를 제작 할 수 있다. 하지만 마이크로 블라스터를 이용하면 표면에 식각된 미세 파티클의 재흡착이 일어나게 되므로 이를 제거하기 위하여 DRE(damage remove etching) 공정이 필요하게 된다. 본 연구에서는 이방성, 등방성 식각 공정으로 태양전지용 재생웨이퍼를 제작하기 위해 가장 적합한 DRE 공정을 찾기 위해 등방성 식각은 RIE 식각으로, 그리고 이방성 식각은 TMAH 식각을 이용하였다. 마이크로 블라스터 공정 후 표면 반사율과 SEM 사진을 이용한 표면 요철 구조를 확인 하였고, DRE 공정 후 표면 반사율과 SEM 사진을 이용하여 표면 요철 구조를 확인 하였다. 각각의 lifetime을 측정하여 표면 식각으로 생성된 결함들을 분석하여 태양전지용 재생웨이퍼 제작에 가장 적합한 공정을 확인 하였다.

  • PDF

직류 아크 플라즈마트론을 이용한 플라즈마 식각 공정연구

  • Kim, Ji-Hun;Cheon, Se-Min;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.479-479
    • /
    • 2010
  • 현재까지 대부분의 반도체 공정이나 LCD 공정에 사용되는 플라즈마는 진공 플라즈마이다. 이는 대기압에서의 플라즈마 발생의 어려움, 공정 품질 등이 원인이기도 하다. 그러나 진공 장비의 고가 및 진공 시스템 부피의 거대화 등의 많은 단점이 있다. 현재의 진공 플라즈마공정을 대기압 플라즈마 공정으로 대체 할 수 있다면 많은 경제적인 이득을 얻을 수 있을 것이다. 본 연구실에서 개발한 직류아크 플라즈마트론은 기존의 대기압 플라즈마 장치에 비해 수명이 길고, 광학적으로 깨끗하고, 활성도가 높은 플라즈마를 얻을 수 있는 장점이 있다. 직류아크 플라즈마트론의 식각공정에 적용을 위해 플라즈마트론을 저 진공 및 대기압에서 적용하여 실험하였다. 식각 가스로는 SF6를 사용하였고, Ar과 O2를 혼합하여 플라즈마트론의 음극 보호 및 식각률을 높이도록 하였다. 실험결과 저진공 플라즈마의 경우, 플라즈마 영역이 20 cm를 넘는 반면, 대기압에서는 플라즈마 유효 길이가 약 20 mm로 매우 짧았다. 하지만 저 진공(~ 3 mbar)에 적용하여 최대 $60\;{\mu}m/min$의 식각률을 보였고, 대기압 플라즈마의 경우 $300\;{\mu}m/min$ 넘는 식각률을 달성하였다.

  • PDF