• Title/Summary/Keyword: 시차열량계

Search Result 162, Processing Time 0.021 seconds

Rheological Properties During Mixing and Thermal Properties of Polypropylene/Natural Fiber Composites: II. Effects of A Compatibilizer (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 및 열적 특성: II. 상용화제의 영향)

  • Kim, Sam-Jung;Yoo, Chong Sun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We investigated effects of a compatibilizer on the rheological properties during mixing and thermal properties of polypropylene (PP)-natural fiber composites. Two types of natural fibers (cotton fiber and wood fiber) were compared. maleic anhydride grafted PP was used for a compatibilizer. On increasing the amounts of the compatibilizer, the torque values of composites were increased, regardless of the kind of fibers. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results showed a slight increase in the degree of crystallinity with adding the compaibilizing agent, while the effects of the kind of fibers were marginal. It may be considered, however, the cotton fiber exhibits better interaction with PP-g-MAH than the natural fiber based on the rheographs, DSC, and XRD results.

  • PDF

Synthesis and Application of Reactive Polymer Modifiers for Asphalt: 2. Application (아스팔트용 반응성 고분자 개질제 합성 및 적용: 2. 적용)

  • Hwang, Ki-Seob;Lee, Jong-Cheol;Jang, Suck-Soo;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.538-542
    • /
    • 2007
  • This study is on the performance analysis of modified asphalts which were prepared by mixing the asphalt with polymer modifiers of varying compositions which were synthesized by the emulsion polymerization method. Thermal properties of mired asphalt were investigated by DSC (differential scanning calorimetry), and dispersion of modifiers in asphalt was investigated by the fluorescence microscope. Dynamic stability and permanent deformation velocities of mixed asphalt were investigated by wheel tracking measurements. Modifier 6 showed the best results in both penetration test and wheel tracking measurement among investigated modifiers, which supports MMA(methyl methacrylate) moiety in modifiers plays better contribution for the enhancement of asphalt performance than styrene moiety does.

Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants (카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구)

  • Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • The low viscous epoxy resin(bisphenol F) with carboxylic acid as the reductants was introduced for high performance and reliability in the ACA with a low melting point alloy filler system. The curing characteristics of the epoxy resin and temperature dependant viscosity characteristic of epoxy resin at the melting temperature of LMPA were investigated by dynamic mode of differential scanning calorimetry (DSC) and rheometer, respectively. Based on these thermo-rheological characteristics of epoxy resin and LMPA, the optimum process system was designed. In order to remove the oxide layer on the surface of LMPA particle, three different types of carboxyl acid-based reductant were added to the epoxy resin. The wetting angles were about $18^{\circ}$ for carboxypropyldisilioxane, and $20.3^{\circ}$ for the carboxy-2-methylethylsiloxane, respectively.

Study on Characteristics of Sn-0.7wt%Cu-Xwt%Re Solder (Sn-0.7wt%Cu-Xwt%Re 솔더의 특성에 관한 연구)

  • Noh, Bo-In;Won, Sung-Ho;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.21-25
    • /
    • 2007
  • In this study, the properties of Sn-0.7wt%Cu-Xwt%Re(X=$0.01{\sim}1.0$) older were investigated by using DSC(differential scanning calorimetry), wetting balance, victors hardness and tensile testers. The melting temperature of solder was increased with increasing the contents of rare earth element, and the melting temperature range of Sn-0.7Cu-($0.01{\sim}1.0$)Re solder was $233.9{\sim}234.7^{\circ}C$. The wettability with Sn-0.7Cu-0.1Re solder was higher than that of Sn-0.7Cu-0.01Re and Sn-0.7Cu-1.0Re solders, and the wettability of Sn-0.7Cu-0.1Re solder was higher than that of Sn-0.7wt%Cu-0.01w%P solder. Also, the hardness and tensile strength of solder were increased with increasing the contents of rare earth element.

  • PDF

Preparation and Electrochemical Behaviors of Polymer Electrolyte Based on PEO/PMMA Containing Li Ion (Li 이온 포함하는 PEO/PMMA 고분자 전해질의 제조 및 전기화학적 거동)

  • Han, A-Reum;Park, Soo-Jin;Shin, Jae-Sup;Kim, Seok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.476-480
    • /
    • 2009
  • A polymer composite electrolyte of a blend of poly(methyl methacrylate)(PMMA) and poly(ethylene oxide) (PEO) as a host polymer, the ethylene carbonate as a solvent, and $LiClO_4$ as a salt was studied. The crystallinity of the polymer electrolytes was evaluated using differential scanning calorimeter(DSC). The ionic conductivity of the polymer electrolytes was measured by frequency response analyzer(FRA) method. The effect of PEO/PMMA blend ratios on the ionic conduction in these electrolytes was investigated. The electrolyte films showed a phase separation due to immiscibility of the PMMA with the PEO. The PMMA-rich phase and the PEO-rich phase were produced during a film casting. The ionic conductivity of blend electrolyte was dependent on the content of PMMA and showed the highest value at 20 wt.%. However, when PMMA content exceeds 20 wt.%, the ionic conductivity was decreased due to the slow ionic transport through the PMMA-rich phase.

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles (Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향)

  • Lee, Seo Young;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.679-684
    • /
    • 2017
  • Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.

Study on Explosion Behavior of Air-born Rice Bran Dusts according to Ignition Energy (점화에너지 변화에 따른 쌀겨분진의 폭발 거동에 관한 연구)

  • 김정환;김현우;현성호;백동현
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.26-32
    • /
    • 1999
  • We had investigated combustion pro야$\pi$ies of rice bran dusts. Decomposition of rice bran d dusts with temperature were investigated using DSC and the weight loss according to t temperature using TGA in order to find the thermal hazard of rice bran dusts, and the p properties of dust explosion in variation of their dust with the same particle size. Using H Hartman's dust explosion apparatus which estimate dust explosion by electric ignition after m making dust disperse by compressed air, dust explosion experiments have been conducted by v varying concen$\sigma$ation and size of rice br뻐 dust. According to the results for thermodynamic stability of rice bran dust, there are little change of initiation temperature of heat generation 때d heating value for used particle size. But i initiation temperature of heat generation decreased with high heating rate whereas d decomposition heat increased with particle size. Also, the explosion pressure was increased as t the ignition energy increased and average maximum explosion pressure was 13.5 kgv'cnt for 5 BJ/60 mesh and 1.5 뼈Ie미 dust concentration.

  • PDF

Fabrication and Evaluations of Hydrogenation Properties of TiH2/TiH2-Al agents on Aluminum Foam Alloy (알루미늄 발포용 TiH2/TiH2-Al의 제조와 수소화 특성 평가)

  • Hong, T.-W.;Cho, G.-W.;Kweon, S.-Y.;Kim, I.-H.;Lee, J.-I.;Ur, S.-C.;Lee, Y.-G.;Ryu, S.-L.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.235-243
    • /
    • 2004
  • A number of potential applications of aluminum foams are being identified and renewed interest in these engineering materials is also reflected by several current research projects. One of the key issues for industrial exploitation of aluminum foams is the development of cost-effective manufacturing strategies facilitating, preferably, net shape production of foams with controlled porosity and cell size, and minimized structural imperfection. Especially, melt route to aluminum foam production based on the foaming agents offer attraction of low cost and the potential for good microstructure. The present paper is focused mainly on foaming agents of melt-foam aluminum such as $TiH_2$ or $TiH_2-Al$ mixture. For the purpose of economical manufacturing, we are proposed to hydrogen induced mechanical alloying (HIMA) process. Thermo-physical properties of particles synthesized are compared with conventional methods. Specimens synthesized are characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), thermo- gravimetry-differential scanning calorymetry (TG-DSC), pressure-composition-isotherm. (PCI).

Cure Shrinkage Behavior of Polymer Matrix Composite according to Degree of Cure (경화도에 따른 고분자 기지 복합재의 경화 수축률 거동)

  • Kwon, Hyuk;Hwang, Seong-Soon;Choi, Won-Jong;Lee, Jae-Hwan;Kim, Jae-Hak
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.90-95
    • /
    • 2014
  • Cure shrinkage during cure process of polymer matrix composites develope residual stress that cause some structural deformation, such as spring-in, spring-out and warpage. The carbon/epoxy prepreg used in this study is Hexply M21EV/34%/UD268NFS/IMA-12K supplied by Hexcel corp. Cure shrinkage and degree of cure measured by TMA(thermomechanical analyzer) and DSC(differential scanning calorimetry). Cure shrinkages are measured by TMA within a temperature range of $140{\sim}240^{\circ}C$ in a nitrogen atmosphere, and degree of cure determined by the heat of reaction using dynamic and isothermal DSC runs in argon atmosphere. As a result, the cure shrinkage is increased dramatically in a degree of cure range between 27~80%. the higher the cure temperature, the lower the degree of cure occurring to begin cure shrinkage.

Preparation and Characterization of Sponge Using Porcine Small Intestinal Submucosa (돼지의 소장 점막하 조직을 이용한 스폰지의 제조 및 특성 결정)

  • 신혜원;김선화;장지욱;김문석;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.194-200
    • /
    • 2004
  • Porcine small intestine submucosa (SIS) has been widely used as a biomaterial without immunorejection responses. Crosslinked SIS sponges were characterized for the possibility of the bio-interactive wound dressings and tissue engineered scaffolds. SIS powders were dissolved in 3% acetic acid aqueous solution at 48hrs followed by pouring into mold and then fabricated by freeze-drying method. SIS sponge was prepared by crosslinked with 1-ethyl-(3-3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC) solution (deionized water: ethanol=5:95) with 1-100mM concentration for 24 hrs and Iyophilized. SIS sponges were characterized by scanning electron microscopy, differential scanning calorimeter, and Fourier transform infrared spectrometer and were tested their porosity and water absorption ability. It was observed that the concentration of EDC might be exceeded 50 mM to get good physical characteristics. In conclusion, it seems that SIS sponge could be very useful for the applications of wound healing and tissue construction.