• 제목/요약/키워드: 시일 마멸

검색결과 81건 처리시간 0.028초

광디스크 플레이어의 턴테이블용 폴리머재료의 마찰ㆍ마멸 특성 연구

  • 지광열;김대은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.60-60
    • /
    • 2004
  • 광디스크 미디어 저장기기에 있어서 음악과 영상을 재생하는 광디스크 플레이어의 기구부품 중 턴테이블은 디스크를 장착, 고정하여 디스크에 기록된 신호를 재생케 하는 광디스크 메커니즘의 중요기능 부품이다. 특히 별도의 클램퍼 없이 턴테이블에 부설된 탄지력만으로 디스크를 장착, 고정하는 슬림형 플레이어에서 스핀들 모터의 회전 시 턴테이블에 장학된 광디스크의 슬립은 재생에러를 야기한다. 스피닝 회전속도가 증가할수록 디스크의 슬립을 방지하기 위해서는 디스크와 턴테이블의 증가된 마찰력이 요구된다.(중략)

  • PDF

Sliding Contact Analysis between Rubber Seal, a Spherical Particle and Steel Surface (시일과 스틸면 사이에 구형 입자가 있는 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, a three elastic body sliding contact problem is modeled to investigate more precise wear mechanisms related with the sealing surface. A 3-D finite element contact model, a small spherical elastic particle, PTFE seal and steel surface, is solved using a nonlinear finite element code MARC. The deformed seal and steel surface shapes, von-Mises and principal stress distributions are obtained for different seal sliding distances. The entrapped small particle within PTFE seal results in very high stresses on the steel surface which exceeded its yield strength and produce plastic deformation such as groove and torus. The sealing surface could also be worn down by sub-surface fatigue due to intervening small particles together with the well-known abrasive wear. Therefore the proposed contact model adopted in this paper can be applied in design of various sealing systems, and further studies are required.

The Influence of Machinability on Tool life of the ADI Materials in Drilling (ADI재료의 드릴가공시 절삭특성이 공구수명에 미치는 영향)

  • 반재삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.92-96
    • /
    • 1996
  • 최근 유용한 신소재로많은 광심을 보이고 있는 오스템퍼처리 구상흑연 주철(Austempered Ductile Cast Iron 이하 ADI라 한다) 은 기지조직이 베이나이트와 잔류 오스테나이트로 구성되어있기 때문에 같은 화학 조성을 갖는 일반 구상 흑연 주철에 비하여 연성 및 연성의 감소가 없이 2배 정도의 강도를 증가 시킬수 있기 때문에 자동차, 선박 부품 및 각종 기계부품에 적용시키기 위한 많은 연구가 진행되고 있다. 본 연구에서는 서로 재질의 성분이 다른 고속도강 드릴인 소경드릴을 이용하여 ADI재료를 보통(비관통)이송 및 단계이송 절삭가공시 발생되는 공구의 마멸량과 표면조도와의 관계, 절삭력의 변화에 따른 공구마멸과 공구수명과의 관계를 실험적으로 규명하여 ADI재료 의 보통 및 단계이송절삭시 공구수명에 미치는 제반 절삭특성의 영향에 관해 고찰 하고자 한다.

  • PDF

In-Process Detection of Flank Wear Width by AE Signals When Machining of ADI (ADI 절삭시 AE신호에 의한 플랭크 마멸폭의 인프로세스 검출)

  • 전태옥
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • 제8권6호
    • /
    • pp.71-77
    • /
    • 1999
  • Monitoring of Cutting tool wear is a critical issue in automated machining system and has been extensively studied for many years. An austempered ductile iron(ADI) exhibits the excellent mechanical properties and the wear resistance. ADI has generally the poor machinability due to the characteristic. This paper presents the in-process detection of flank wear of cutting tools using the acoustic emission sensor and the digital oscilloscope. The amplitude level of AE signal(AErms) is mainly affected by cutting speed and it is proportional to cutting speed. There have been the relationship of direct proportion between the amplitude level of AE signals and the flank wear width of cutting tool. The flank wear with corresponding to the tool life is successfully detected with the monitor-ing system used in this study.

  • PDF

Characteristics of tool wear in cutting of glass fiber reinforced plastics (유리섬유 강화 플라스틱 절삭시의 공구마멸 특성)

  • 강명순;이원평
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제12권5호
    • /
    • pp.1055-1062
    • /
    • 1988
  • The characteristics of tool wear and the machinability in cutting of GFRP have been studied. The wear behavior of carbide insert tools(P20, M10, K10) and Cermet in TiC grade was studied by turning of changing the cutting condition. Machinability could be estimated as the following empirical formula, CT$^{n}$ =W The main results obtained are as follows: (1) Dependence of rate of tool wear on cutting speed; with increases of cutting speed, the rate of tool wear initially increases gradually(1st range), then it increases proportionally to cutting speed(2nd range), and finally the rate is constant(3rd range). (2) When the contact length has a main, effect on tool wear, the cutting speed does nit affect the tool wear. On the contrary, the cutting speed has a main effect on tool wear, the contact length does not affect the tool wear. (3) The order of machinability is K10, M10, P20 and Cermet in TiC grade.

A study on the progressive tool wear and acoustic emission signals in milling process (밀링가공시 발생하는 공구마멸과 AE신호에 관한 연구)

  • 황홍연;이병찬;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제12권5호
    • /
    • pp.1035-1042
    • /
    • 1988
  • The acoustic emission(AE) signal is monitored in milling operation in order to investigate the relationship between the progressive tool wear and the AE signals. A signal processing technique so called time domain averaging(TDA) is presented for the elimination of the influences of the noise imbedded in the periodic signals. The relationship between the progressive tool wear and the AE signals is investigated by varying the cutting speed, feed, depth of cut and the number of insert. From the measured data, it is observed that the averaged level of the AE signal increases at first with the increase of flank wear to a certain critical value, and then stays almost constant or fluctuates with further increase of the flank wear.

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

Monitoring of Tool Wear Condition by Cutting Resistance and AE Signal in Drilling ADI Material. (ADI재의 드릴가공시 절삭저항 및 AE신호에 의한 공구마멸상해의 검출)

  • 유경곤;전태옥;박홍식
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제15권11호
    • /
    • pp.32-38
    • /
    • 1998
  • For the purpose of monitoring the abnormal state in proportion to cutting in automatic production process, the 3 kinds of specimens different from mechanical properties by austempering through temperature variation were manufactured, and the effects of tool wear on thrust and AE RMS was analyzed with sequential drilling in in-process. When the ADI specimens were drilled, the relationship of thrust and AE RMS with flank wear was studied through experiments, and it is confirmed that the reliable wear state is able to be monitored by using these signals. It was shown that thrust and AE RMS increased slowly till flank wear reached to V$_{B}$ = 0.25mm, and they increased steeply over the value. The effective tool exchange time was able to be pre-estimated by using this fact. It was validated that the tool breakage was able to be detected on the real time by monitoring in in-process.s.

  • PDF

Material Transfer of MoS2 Wear Debris to Diamond Probe Tip in Nanoscale Wear test using Friction Force Microscopy (마찰력현미경을 이용한 나노스케일 마멸시험 시 다이아몬드 탐침으로의 MoS2 마멸입자 전이현상)

  • Song, Hyunjun;Lim, Hyeongwoo;Seong, Kwon Il;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • 제35권5호
    • /
    • pp.286-293
    • /
    • 2019
  • In friction and wear tests that use friction force microscopy (FFM), the wear debris transfer to the tip apex that changes tip radius is a crucial issue that influences the friction and wear performances of films and coatings with nanoscale thicknesses. In this study, FFM tests are performed for bilayer $MoS_2$ film to obtain a better understanding of how geometrical and chemical changes of tip apex influence the friction and wear properties of nanoscale molecular layers. The critical load can be estimated from the test results based on the clear distinction of the failure area. Scanning electron microscopy and energy-dispersive spectroscopy are employed to measure and observe the geometrical and chemical changes of the tip apex. Under normal loads lower than 1000 nN, the reuse of tips enhances the friction and wear performance at the tip-sample interface as the contact pair changes with the increase of tip radius. Therefore, the reduction of contact pressure due to the increase of tip radius by the transfer of $MoS_2$ or Mo-dominant wear debris and the change of contact pairs from diamond/$MoS_2$ to partial $MoS_2$ or Mo/$MoS_2$ can explain the critical load increase that results from tip reuse. We suggest that the wear debris transfer to the tip apex should be considered when used tips are repeatedly employed to identify the tribological properties of ultra-thin films using FFM.