• Title/Summary/Keyword: 시야각 가시화

Search Result 2, Processing Time 0.015 seconds

Massive 3D Point Cloud Visualization by Generating Artificial Center Points from Multi-Resolution Cube Grid Structure (다단계 정육면체 격자 기반의 가상점 생성을 통한 대용량 3D point cloud 가시화)

  • Yang, Seung-Chan;Han, Soo Hee;Heo, Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • 3D point cloud is widely used in Architecture, Civil Engineering, Medical, Computer Graphics, and many other fields. Due to the improvement of 3D laser scanner, a massive 3D point cloud whose gigantic file size is bigger than computer's memory requires efficient preprocessing and visualization. We suggest a data structure to solve the problem; a 3D point cloud is gradually subdivided by arbitrary-sized cube grids structure and corresponding point cloud subsets generated by the center of each grid cell are achieved while preprocessing. A massive 3D point cloud file is tested through two algorithms: QSplat and ours. Our algorithm, grid-based, showed slower speed in preprocessing but performed faster rendering speed comparing to QSplat. Also our algorithm is further designed to editing or segmentation using the original coordinates of 3D point cloud.

A Study of f-${\theta}$ Lens Design for Axisymmetric Spherical Surface for RGB Laser Display and its applications (RGB 레이저 가시화를 위한 축대칭 구면 f-${\theta}$ 렌즈 설계 및 프로젝션응용)

  • Lee, Y.M.;Choi, H.W.
    • Laser Solutions
    • /
    • v.14 no.2
    • /
    • pp.24-29
    • /
    • 2011
  • The design of a telecentric f-${\theta}$ lens with a field of view (FOV) $30^{\circ}$ and an effective focal length of 1000mm is presented. The optical stop is placed at the front plane and the design is based on a geometric ray tracing technique, and the designed system consists of a series of convex and concave lenses. The designed f-${\theta}$ lens showed a considerable reduction in weight with a simplified structure and resulted in a good performance in the designated FOV. Detail analysis of rays is also presented. 653nm (red laser), 586nm (green laser), and 468nm (blue laser) were simulated as a light source and image illuminating source. The developed optical design requires 7 pieces of lenses made of SF1, N-FK56, N-LAK33, and BK7 glass materials. With optimal parametric design, the effective focal length was calculated to be 974.839mm which is very close to the initial design target. For the manufacturing purpose, the dimensions of lens curvature and thickness were truncated with error ranging 0.1% to 3.2%. As a result, the overall error was calculated to be 3.2% which can be still tolerable for display, laser material, and machining processing.

  • PDF