DOI QR코드

DOI QR Code

Massive 3D Point Cloud Visualization by Generating Artificial Center Points from Multi-Resolution Cube Grid Structure

다단계 정육면체 격자 기반의 가상점 생성을 통한 대용량 3D point cloud 가시화

  • 양승찬 (연세대학교 토목환경공학과) ;
  • 한수희 (경일대학교 위성정보공학과) ;
  • 허준 (연세대학교 토목환경공학과)
  • Received : 2012.04.06
  • Accepted : 2012.08.31
  • Published : 2012.08.31

Abstract

3D point cloud is widely used in Architecture, Civil Engineering, Medical, Computer Graphics, and many other fields. Due to the improvement of 3D laser scanner, a massive 3D point cloud whose gigantic file size is bigger than computer's memory requires efficient preprocessing and visualization. We suggest a data structure to solve the problem; a 3D point cloud is gradually subdivided by arbitrary-sized cube grids structure and corresponding point cloud subsets generated by the center of each grid cell are achieved while preprocessing. A massive 3D point cloud file is tested through two algorithms: QSplat and ours. Our algorithm, grid-based, showed slower speed in preprocessing but performed faster rendering speed comparing to QSplat. Also our algorithm is further designed to editing or segmentation using the original coordinates of 3D point cloud.

건축, 토목, 의료, 컴퓨터 그래픽스 분야 등 다양한 분야에서 이용되는 3D point cloud는 최근 레이저 스캐너의 발달로 인해 그 용량이 점점 커지게 되었다. 컴퓨터 메모리의 용량을 넘어서서 모든 데이터를 한 번에 처리할 수 없는 대용량 3D point cloud를 가시화하고 편집하기 위해 여러 전처리 및 가시화 방법들이 소개되었고 본 논문에서 비교한 QSplat의 경우 3D 모델의 형상 확인과 용량 감소를 목적으로 원본 좌표를 손실 압축하여 저장하였다. 본 논문에서 제시하는 방법은 3D point cloud를 정육면체 격자로 분할하고 center sampling을 통해 가상점 집합을 생성하며 가시화 과정에서 격자에 저장된 point 집합 취득을 통한 빠른 렌더링이 가능하다. 홍익대학교 인근 지역을 측정한 약 1억 2천만 개 point의 대용량 3D point cloud를 QSplat과 다단계 정육면체 격자 기반 방법으로 비교한 결과 전처리 과정에서는 QSplat이, 가시화 과정에서는 다단계 정육면체 격자 기반 방법이 빠른 속도를 보여주었다. 또한 다단계 정육면체 격자 기반 방법은 point의 원본 좌표를 저장하기에 추후 가시화 외에 편집, segmentation 등의 작업을 고려하여 고안되었다.

Keywords

References

  1. 연세대학교 (2009), LiDAR 자료를 이용한 빌딩모형 자 동화 추출 알고리즘 개발, 최종 보고서, SK C&C
  2. Botsch M. and Kobbelt L. (2003), High-Quality Point-Based Rendering on Modern GPUs, Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society, Canmore, p. 335.
  3. Dachsbacher C., Vogelgsang C. and Stamminger M. (2003), Sequential Point Trees, ACM Transactions on Graphics, ACM, Vol. 22, No. 3, pp. 657-662. https://doi.org/10.1145/882262.882321
  4. Gobbetti E., Kasik D. and Yoon S. E. (2008), Technical Strategies for Massive Model Visualization, Proceedings of the 2008 ACM symposium on Solid and physical modeling, ACM, Stony Brook, pp. 405-415.
  5. Gobbetti E. and Marton F. (2004), Layered Point Clouds: a simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models, Computers & Graphics, Pergamon Press, Vol. 28, No. 6, pp. 815-826. https://doi.org/10.1016/j.cag.2004.08.010
  6. Goswami P., Zhang Y., Pajarola R. and Gobbetti E. (2010), High Quality Interactive Rendering of Massive Point Models using Multi-way kd-Trees, Proceedings of the 18th Pacific Conference on Computer Graphics and Applications 2010, IEEE Computer Society, pp. 93-100.
  7. Khronos Group (2012), OpenGL FAQ / 22 Performance, The Khronos Group, Oregon, USA, http://www.opengl.org/archives/resources/faq/technical/performance.htm
  8. Levoy M. and Whitted T. (1985), The Use of Points as a Display Primitive, Technical Report 85-022, Computer Science Department, University of North Carolina at Chapel Hill.
  9. Pajarola R., Sainz M. and Lario R. (2005), XSplat: External Memory Multiresolution Point Visualization, International Conference on Visualization, Imaging and Image Processing, IEEE Computer Society, Benidorm, pp. 628-633.
  10. Rusinkiewicz S. (2000), trimesh2, Princeton University, New Jersey, http://gfx.cs.princeton.edu/proj/trimesh2
  11. Rusinkiewicz S. and Levoy M. (2000), QSplat: A Multiresolution Point Rendering System for Large Meshes, Proceedings of ACM SIGGRAPH 2000, ACM, New Orleans, pp. 343-352.
  12. Wand M. (2004), Point-Based Multi-Resolution Rendering, PhD dissertation, Universitat Tübingen, Germany.
  13. Wand M., Berner A., Bokeloh M., Fleck A., Hoffmann M., Jenke P., Maier B., Staneker D. and Schilling A. (2007), Interactive Editing of Large Point Clouds, Proceedings of Symposium on Point-Based Graphics 2007, Eurographics Association, Prague, pp. 37-46.
  14. Westover L. (1989), Interactive Volume Rendering, Proceedings of the 1989 Chapel Hill workshop on Volume visualization, ACM, New York, pp. 9-18.
  15. Wimmer M. and Scheiblauer C. (2006), Instant Points, Proceedings Symposium on Point-Based Graphics 2006, Eurographics Association, Boston, pp. 129-136.
  16. Yuan X., Nguyen M. X., Xu H. and Chen B. (2003), Hybrid Forward Resampling and Volume Rendering, IEEE TVCG Workshop on Volume graphics 2003, ACM, New York, pp. 119-127.
  17. Delaunay (1934), Sur la sphere vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, Vol. 7, pp. 793-800.
  18. Gustav K. (1850), Uber die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Journal fur die Reine und Angewandte Mathematik, Vol. 40, pp. 209-227.

Cited by

  1. 3D레이저스캐닝을 이용한 옥트리기반 구조물 형상정보 가시화 vol.17, pp.8, 2012, https://doi.org/10.5762/kais.2016.17.8.8
  2. A Terrestrial LiDAR-Based Detection of Shape Deformation for Maintenance of Bridge Structures vol.145, pp.12, 2012, https://doi.org/10.1061/(asce)co.1943-7862.0001701