• Title/Summary/Keyword: 시안화합물

Search Result 22, Processing Time 0.026 seconds

Analytical Determination of Cyanide in Maesil (Prunus mume) Extracts (매실추출제품의 시안화합물 분석법에 관한 연구)

  • Kim, Eun-Jung;Lee, Hwee-Jae;Jang, Jin-Wook;Kim, In-Young;Kim, Do-Hyeong;Kim, Hyun-Ah;Lee, Soo-Min;Jang, Ho-Won;Kim, Sang-Yub;Jang, Young-Mi;Im, Dong-Kil;Lee, Sun-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-135
    • /
    • 2010
  • Picrate, enzyme-picrate and instrumental analysis methods using IC (Ion Chromatography) and HPLC (High Performance Liquid Chromatography) were compared for their effectiveness in determining cyanide in extracts of Maesil, which is classified as a harmful substance. First, the picrate method showed the shortest analysis time (about 5 hr). The color of picrate paper changed at 0.01 mg/$200\;mL\;CN^-$. However, it was difficult to detect cyanide from amygdalin of glucosides. Second, we performed a qualitative analysis for total cyanide (free cyanide and cyanide from amygdalin) by the enzyme-picrate method using $\beta$-glucosidase and a quantitative analysis by spectrophotometry. Finally, analysis of cyanide by IC and HPLC required the longest determining time (about 17 hr) as well as pretreatment for each free cyanide and amygdalin. These results suggest that enzyme-picrate is the most effective analysis method for the detection of cyanide in Maesil extracts.

Photo-catalytic Oxidation of Cyanide Complexes Associated with Heavy Metals Using UV LED and Pt-dopped TiO2 (자외선 LED와 백금으로 박막된 TiO2 광촉매를 이용한 중금속과 결합한 시안화합물의 광촉매 산화)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • Cyanide can be leached out from the cyanidation method which has been used to extract high-purity gold and silver from ores, and it becomes a variety of cyanide complexes associated with heavy metals contained in ores. Such cyanide complexes are considered as persistent and non-degradable pollutants which cause adverse effects on humans and surrounding environments. Based on binding force between heavy metals and cyanide, cyanide complexes can be categorized weak acid dissociable (WAD) and strong acid dissociable (SAD). This study comparatively evaluated the performance of photo-catalytic process with regard to forms of cyanide complexes. In particular, both effects of UV LED wavelength and surface modification of photo-catalyst on the removal efficiency of cyanide complexes were investigated in detail. The results indicate that the performance of photo-catalytic oxidation is significantly affected by the form of cyanide complexes. In addition, the effect of UV LED wavelength on the removal efficiency was quite different between free cyanide and cyanide complexes associated with heavy metals. The results support that the surface modification of photo-catalyst, such as doping can improve overall performance of photo-catalytic oxidation of cyanide complexes.

흡광광도법을 이용한 작업환경중 시안화합물 분석법

  • Lee, Jin-Se;Kim, So-Jin;Choe, Ho-Chun
    • 월간산업보건
    • /
    • s.122
    • /
    • pp.38-44
    • /
    • 1998
  • 본 분석기법을 소개하고자 하는 목적은 유해인자별 작업환경 측정 및 특수건강진단 시료 분석에 맞는구체적인 분석결과를 제시함으로써 산업보건관련 유관기관에 실질적인 도움을 주고자 함 입니다.

  • PDF

도금공정의 안전성평가

  • 박익철;이광원;박문희;이홍기
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.11a
    • /
    • pp.79-85
    • /
    • 2002
  • 도금이란 금속이나 비금속의 표면을 얇은 금속 막으로 밀착 피복 시켜 마무리하는 공정을 말한다. 이러한 도금은 제품에 내식성과 장식성, 기계적 강도 등을 주기 위한 목적에서 행해진다. 그러나 도금작업에서는 염산, 황산, 질산 등의 산성물질(Acid)과 수산화나트륨, 수산화칼륨 등의 알칼리성 물질 및 시안화칼륨, 시안화나트륨 등의 시안화크롬화합물 이외에도 다수의 유해한 화학물질을 취급하고 있다.(중략)

  • PDF

Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor (충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성)

  • Ryu, Sam-Gon;Park, Myung-Kyu;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.343-347
    • /
    • 2012
  • The decomposition behaviors of gaseous cyanides in non-thermal plasma-catalyst hybrid reactor have been investigated with the variation of discharge power, influent concentration of cyanide, humidity of air carrier and packed materials in the reactor. Destruction of cyanides by plasma only process was very difficult compared to that of trichloroethylene. But the destruction efficiencies of cyanides were dramatically improved through packing alumina or Pt/alumina bead in the plasma discharge region. From the results, it could be assumed that thermal catalytic effect is involved simultaneously with plasma in the reaction of cyanides destruction on the alumina or Pt/alumina packed plasma reactor.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Application and Evaluation of Cleaner Production Technology in Zinc Plating Process (아연도금공정에서의 청정생산기술의 적용 및 평가)

  • Lee, H.K.;Koo, S.B.
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The metal finishing industry generates a variety of pollutants such as acidic or alkaline wastewater, chromic compounds, cyanide, heavy metals, and toxic materials. Especially, zinc plating process is one of the processes which cause serious environmental problems. In this study, we applied the proven optimum technology to important unit processes in terms of implement effects through the process diagnosis and analysis. This study aimed to improve the working environment and the environmental pollutions in zinc plating process.

  • PDF

Removal of Cyanogenic Compounds in Apricot Kernel during Heating Process (가열조리방법을 통한 행인 내 시안화합물의 저감화)

  • Do, Byung-Kyung;Kwon, Hoon-Jeong;Lee, Dong-Ha;Nah, Ahn-Hee;Choi, Youn-Ju;Lee, Sook-Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.395-400
    • /
    • 2007
  • Apricot Kernel, consumed as herbal medicine, contains amygdalin which generate HCN upon hydrolysis. Dyspnea was reported by ingesting large amount of apricot kernel, and neurological disorders such as tropic ataxic neuropathy or konzo were known as chronic toxicity of amygdalin. Other cyanogen containing plants, including flaxseed and almond, are consumed as food around the world. Moreover, some of them are promoted as functional food, leading to higher consumption, and posing health risk by cyanogenic components. The objective of this study was to find a method for the reduction of the cyanogenic compound, using apricot kernel as a model food. The most effective reduction was obtained by boiling the slices of the kernel for one hour in pH 1 HCl solution, showing 90% removal. However, the common process known to reduce the cyanogen contents, i.e., long incubation at the low temperature, did not show significant change in cyan concentration. Our data contribute to the safety of the plants containing cyanogenic compounds if they were to be developed as foodstuff.

Temperature-Dependent Effects of Pollutants on Biological Denitrification Process for Treating Cokes Wastewater (코크스폐수의 생물학적 탈질공정에 대한 독성물질의 온도에 따른 영향)

  • Kim, Young Mo;Park, Donghee;Ahn, Chi Kyu;Lee, Min Woo;Park, Jong Moon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1124-1129
    • /
    • 2008
  • Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of pollutants, such as phenol, ammonia, thiocyanate and cyanides. Although biological pre-denitrification process has been used to treat this wastewater in Korea, unexpected failure in nitrogen removal occasionally occurs during summer season. In this study, therefore, we examined inhibitory effects of phenol, ammonia, thiocyanate, ferric cyanide and free cyanide on biological denitrification according to temperature variation ($20{\sim}38^{\circ}C$). Batch experiments showed that denitrification rate was faster in summer ($38^{\circ}C$) than other seasons, and removal rates of pollutants increased with increasing temperature. Phenol, ammonia, thiocyanate and ferric cyanide did not inhibit denitrification even at its high concentration (200 mg/L). However free cyanide above 0.5 mg/L seriously inhibited the bilolgical denitrification reaction. Inhibitory effect of these pollutants was reduced with increasing temperature.

Current Status of Gold Leaching Technologies from Low Grade Ores or Tailings (저품위 광석 또는 광미내 금 침출기술 현황)

  • Lee, Sang-hun
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.3-7
    • /
    • 2020
  • Recently, the gold leaching technologies draw much interest to recover gold from low grade ores. Current leaching processes mostly use cyanide as the leaching agent, due to its high leaching efficiencies and cost-effectiveness. However, use of cyanide is severely problematic, because of toxicity and thereby environmental risks, and requires strict regulations and environmental management. Especially, this issue becomes further apparent when cyanide should be applied for dump or heap leaching for low cost gold recovery along with recent trends. To resolve this issue, the alternative leaching processes using thiosulfate or halogen compounds, instead of cyanide, have been studied and developed but there have been lots of difficulties toward commercialization, and therefore further research should be conducted. The commercialization of dump or heap bioleaching technologies should be urgently required for effective direct biogenic gold recovery from low grade ores or tailings without use of cyanide.