• Title/Summary/Keyword: 시스템 제어

Search Result 31,295, Processing Time 0.059 seconds

Development of Enhanced DAP(Dose Area Product) (성능이 향상된 면적선량계(DAP) 개발)

  • Lee, Young-Ji;Lee, Sang-Heon;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.739-742
    • /
    • 2019
  • In this paper, we propose enhanced DAP(Dose Area Product). The development of enhanced DAP proposed in this paper has optimized the area dose meter that was developed previously. The development of enhanced DAP performed Optimized design of charge integrator and ADC circuit, optimization of line transceiver for RS-485 communication, optimization of display circuit, and optimization of PC-based control program for interlocking and aging. As a result of evaluating the performance of the proposed system in an accredited testing laboratory, Radiation dose dependence and Radiation quality dependence were measured to be 4.2%, which is below ${\pm}15%$ of international standard. Energy range/Tube voltage was confirmed in the range of 30~150kV. The sensitivity difference between sensor field and sensor field area dose sensitivity was measured to be 4.3%, and it was confirmed that it operates normally under ${\pm}15%$ of international standard. In order to measure the reproducibility of the area dosimeter, it was confirmed that it was 0% and it was operated normally at less than 2% of IEC60580 recommendation. Digital resolution was confirmed to be a minimum unit of $0.01{\mu}Gy{\cdot}m^2$ within the error range for the reference dose per hour.

FEA(Finite Element Analysis) Study for Electronic Hydrogen Regulator of Confidentiality Improvement (전자식 수소레귤레이터 기밀성 향상을 위한 FEA 연구)

  • Son, Won-Sik;Song, Jae-Wook;Jeon, Wan-Jae;Kim, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.175-181
    • /
    • 2019
  • In the case of a conventional single stage decompression regulator used for large depressurization in the hydrogen fuel cell system of a fuel cell electric vehicle (FCEV), problems can arise, such as pulsation, slow response, hydrogen brittleness, leakage, high weight, and high cost due to high decompression. Most of these problems can be overcome easily using two decompression mechanisms (two-stage structures). In addition, a wide outlet-pressure control range can be secured if an electronic solenoid is applied to the second decompression. Accordingly, it is necessary to improve the precision of the outlet pressure of a two-stage pressure-reducing regulator and develop techniques, such as leakage prevention, durability, light weight, and price reduction. Therefore, to improve the outlet pressure accuracy and prevent leakage, the structural part before and after decompression to improve the air tightness were divided and the analysis was carried out assuming that the valve part was closed (open ratio: 0%) after each initial internal pressure application.

The Development of Protocol for Construction of Smart Factory (스마트 팩토리 구축을 위한 프로토콜 개발)

  • Lee, Yong-Min;Lee, Won-Bog;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1096-1099
    • /
    • 2019
  • In this paper, we propose the protocol for construction of smart factory. The proposed protocol for construction of smart factory consists of an OPC UA Server/Client, a technology of TSN realtime communication, a NTP & PTP time synchronization protocol, a FieldBus protocol and conversion module, a technology of saving data for data transmit latency and synchronization protocol. OPC UA server/client is a system integration protocol which makes interface industrial hardware device and supports standardization which allows in all around area and also in not independent from any platform. A technology of TSN realtime communication provides an high sensitive time management and control technology in a way of sharing specific time between devices in the field of high speed network. NTP & PTP time synchronization protocol supports IEEE1588 standardization. A fieldbus protocol and conversion module provide an extendable connectivity by converting industrial protocol to OPC. A technology of saving data for data transmit latency and synchronization protocol provide a resolution function for a loss and latency of data. Results from testing agencies to assess the performance of proposed protocol for construction of smart factory, response time was 0.1367ms, synchronization time was 0.404ms, quantity of concurrent access was 100ea, quantity of interacting protocol was 5ea, data saving and synchronization was 1,000 nodes. It produced the same result as the world's highest level.

A Study on Heat Transfer and Pressure Drop Characteristics according to Block Size and Turbulence Generator's Placement in a Horizontal Channel (블록 크기 및 난류발생기 배치에 따른 수평채널내의 열전달 및 압력강하 특성에 관한 연구)

  • Seo, Kyu-Won;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.639-647
    • /
    • 2019
  • Recently, as the semiconductor integration technology due to miniaturization and high density of electronic equipment have developed, it is importantly recognized the application of thermal control system in order to release inner heat generated from chips, modules, In this study, we considered the heat transfer and pressure drop characteristics in a horizontal channel with four blocks using k-${\omega}$ SST turbulence model During CFD (Computational Fluid Dynamics) analysis, the parameters applied block width, block height, heat source and turbulence generator placement etc. As the boundary conditions of analysis, the channel inlet temperature and flow velocity were respectively 300 K and 3.84 m/s, the heat flux was $358W/m^2$. As a result, the heat transfer performance was decreased as the block width ratio (w/h) was increased, while it was increased as the block height ratio (h/w) was increased. In addition, as the arrangement of heat source size was increased to high heat flux from low heat flux, it was influenced by heat source size and the heat transfer coefficient showed a tendency to increase, When the turbulence generator was installed in the upper part of block No. 1 position the closely to the channel entrance, the heat transfer characteristics was greatly influenced on the whole of four heating blocks. and in oder to consider the pressure drop characteristics, we are able to select the most appropriate turbulence generator's position.

Varying Effects of Artificial Light on Plant Functional Metabolites (인공광 이용에 따른 작물의 기능성 물질의 차별적 증가)

  • Kim, Yang Min;Sung, Jwa Kyung;Lee, Ye Jin;Lee, Deog Bae;Yoo, Chul Hyun;Lee, Seul Bi
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.61-67
    • /
    • 2019
  • BACKGROUND: Many studies on artificial lighting have been recently performed to investigate its effect on agricultural products with good quality. This review was aimed at comparing the effects of artificial light on functional metabolites of the plants that were grown in greenhouses and growth chamber. METHODS AND RESULTS: It has been summarized that artificial lighting both in growth chambers and greenhouses caused different functional metabolites patterns depending on light quality. Even though the same light quality was applied, different patterns in metabolites were observed in different plant species. For the same species, supplementation of the same light quality in both growth chambers and greenhouses did cause different functional metabolites patterns. CONCLUSION: Artificial lighting caused different patterns in functional metabolites of plants grown in greenhouses and growth chambers, depending on the light quality and/or plant species. The manipulation of plant growth and functional metabolites would be possible by engineering the light qualities, but knowledge on proper lighting condition depending on plant species and growth places would be necessary.

Conceptual eco-hydrological model reflecting the interaction of climate-soil-vegetation-groundwater table in humid regions (습윤 지역의 기후-토양-식생-지하수위 상호작용을 반영한 개념적인 생태 수문 모형)

  • Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.681-692
    • /
    • 2021
  • Vegetation processes have a significant impact on rainfall runoff processes through evapotranspiration control, but are rarely considered in the conceptual lumped hydrological model. This study evaluated the model performance of the Hapcheon Dam watershed by integrating the ecological module expressing the leaf area index data sensed remotely from the satellite into the hydrological partition module. The proposed eco-hydrological model has three main features to better represent the eco-hydrological process in humid regions. 1) The growth rate of vegetation is constrained by water shortage stress in the watershed. 2) The maximum growth of vegetation is limited by the energy of the watershed climate. 3) The interaction of vegetation and aquifers is reflected. The proposed model simultaneously simulates hydrologic components and vegetation dynamics of watershed scale. The following findings were found from the validation results using the model parameters estimated by the SCEM algorithm. 1) Estimating the parameters of the eco-hydrological model using the leaf area index and streamflow data can predict the streamflow with similar accuracy and robustness to the hydrological model without the ecological module. 2) Using the remotely sensed leaf area index without filtering as input data is not helpful in estimating streamflow. 3) The integrated eco-hydrological model can provide an excellent estimate of the seasonal variability of the leaf area index.

Structure and Understory Species Diversity of Pinus parviflora - Tsuga sieboldii Forest in Ulleung Island (울릉도 섬잣나무-솔송나무림의 구조 및 하층식생의 종 다양성)

  • Cho, Yong Chan;Hong, Jin Ki;Cho, Hyun Je;Bae, Kwan Ho;Kim, Jun Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • Vegetation structure, composition and diversity were quantified for 10 samples ($10m{\times}10m$) representing woody vegetation and for 30 samples ($1m {\times}3m$) representing understory vegetation in Pinus parviflora and Tsuga sieboldii forest of Taeharyeong, Ulleung-gun (Gyeongsangbuk-do). P. parviflora was limitedly advanced to sapling layer from seedling stage, and based on Mantel tests, composition of canopy layer was not established in ground woody vegetation. Non-metric multidimensional scaling revealed influence of biotic and abiotic factors in species composition of woody and understory vegetation. In the result of multiple regression model, abundance of P. parviflora (density and breast height area) and percent cover of woody debris were significant predict variables for understory diversity. These results suggest that relatively large disturbance is required for regeneration of P. parviflora and T. sieboldii forest, and control of expansion of monocultural understory species that monopolize resources such as Carex blepharicarpa and Maianthemum dilatatum, is necessary for maintenance of diversity.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

The Study on Operability Improvement of the start motor for Auxiliary Power Unit of Rotorcraft (회전익 항공기 보조동력장치 시동모터 운용성 개선연구)

  • Lee, Gwang-Eun;Kang, Byoung-Soo;Na, Seong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.774-780
    • /
    • 2021
  • The auxiliary power unit (APU) of a rotorcraft starts the engine during operation/flying. The APU is composed of a gas turbine engine type. The starting principle of the component is that the electric start motor generates the power required for starting by rotating the shaft. In this study, quality improvement was performed by applying an over-running clutch (ORC) between the APU and the starter motor to secure the operability of the starter motor of the APU mounted on the rotorcraft. The starter motor has the main role of starting the APU, but during operation, it is rotated without load by the rotational force of the APU gear shaft, resulting in friction at the brush. This phenomenon causes abrasion of the brush of the starter motor. Consequently, when the APU operation time increases, the brush life decreases, and the operability of the APU is affected. In this study, an ORC that separates the interlocking between the start motor brush abrasion and the APU operation time was applied to improve the operability/durability of the APU starter motor. The effect was verified through a test, and the technical feasibility of the design change was analyzed.

Technology Development for Non-Contact Interface of Multi-Region Classifier based on Context-Aware (상황 인식 기반 다중 영역 분류기 비접촉 인터페이스기술 개발)

  • Jin, Songguo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.175-182
    • /
    • 2020
  • The non-contact eye tracking is a nonintrusive human-computer interface providing hands-free communications for people with severe disabilities. Recently. it is expected to do an important role in non-contact systems due to the recent coronavirus COVID-19, etc. This paper proposes a novel approach for an eye mouse using an eye tracking method based on a context-aware based AdaBoost multi-region classifier and ASSL algorithm. The conventional AdaBoost algorithm, however, cannot provide sufficiently reliable performance in face tracking for eye cursor pointing estimation, because it cannot take advantage of the spatial context relations among facial features. Therefore, we propose the eye-region context based AdaBoost multiple classifier for the efficient non-contact gaze tracking and mouse implementation. The proposed method detects, tracks, and aggregates various eye features to evaluate the gaze and adjusts active and semi-supervised learning based on the on-screen cursor. The proposed system has been successfully employed in eye location, and it can also be used to detect and track eye features. This system controls the computer cursor along the user's gaze and it was postprocessing by applying Gaussian modeling to prevent shaking during the real-time tracking using Kalman filter. In this system, target objects were randomly generated and the eye tracking performance was analyzed according to the Fits law in real time. It is expected that the utilization of non-contact interfaces.