• Title/Summary/Keyword: 시스템 오차

Search Result 4,318, Processing Time 0.034 seconds

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.5
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

Performance Analysis of Three-Dimensional Radar for Angle and Distance Errors (3차원 레이다 궤적 생성 및 성능 분석)

  • Lim, Hyeongyong;Jang, Yeonsoo;Lee, Taewoo;Hwang, Jaeduck;Yoon, Dongweon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.837-839
    • /
    • 2014
  • In radar systems, information of three-dimensional (3D) trajectory is necessary for tracking targets. The information of 3D trajectory for a 3D radar can be obtained by estimating the azimuth angle, the elevation angle, and the distance. The estimated information of the angles and the distance has errors according to received signals. Since these errors affect performances of 3D radar systems, performance analysis of 3D radar for the angles and the distance errors is required. In this paper, the performance of 3D radar systems is analyzed by root mean square error (RMSE) between true trajectory information and the estimated trajectory information according to the angles and the distance errors.

  • PDF

Control of an Artificial Arm using Flex Sensor Signal (굽힘 센서신호를 이용한 인공의수의 제어)

  • Yoo, Jae-Myung;Kim, Young-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.738-743
    • /
    • 2007
  • In this paper, a muscle motion sensing system and an artificial arm control system are studied. The artificial arm is for the people who lost one's forearm. The muscle motion sensing system detect the intention of motion from the upper arm's muscle. In sensing system we use flex sensors which is electrical resistance type sensor. The sensor is attached on the biceps brachii muscle and coracobrachialis muscle of the upper arm. We propose an algorithm to classify the one's intention of motions from the sensor signal. Using this algorithm, we extract the 4 motions which are flexion and extension of the forearm, pronation and supination of the arm. To verify the validity of the proposed algorithms we made experiments with two d.o.f. artificial arm. To reduce the control errors of the artificial arm we also proposed a fuzzy PID control algorithm which based on the errors and error rate.

Carrier Frequency Offset Estimation Method for Single-Carrier MIMO Systems (단일 반송파 MIMO 시스템 기반의 PN 부호열을 이용한 반송파 주파수 오차 추정 기법)

  • Oh, Jong-Kyu;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.864-875
    • /
    • 2012
  • In this paper, we propose a carrier frequency offset estimation method for single-carrier MIMO systems. In the proposed method, phase rotated PN (Pseudo-Noise) sequences are transmitted to prevent a cancelling out of partial PN sequences. After removing a modulation of received PN sequences by multiplying of complex conjugated PN Sequences which are locally generated in receiver, a CFO (Carrier Frequency Offset) is accurately estimated by employing L&R method which is a kind of ML (Maximum Likelihood) estimation algorithm and uses multiple auto-correlatos. In addition, the frequency offset estimation scheme by using channel state information is proposed for accurate CFO estimation in time-varying Rayleigh channel. By performing computer simulations, MSE (Mean Square Error) performance of proposed method is almost same as MSE performance of SISO systems in AWGN channel. Moreover, MSE Performance of proposed method with using channel information is higher than MSE performances of SISO system and conventional method in time-varying Rayleigh channel.

Implementation of Precise Drone Positioning System using Differential Global Positioning System (차등 위성항법 보정을 이용한 정밀 드론 위치추적 시스템 구현)

  • Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2020
  • This paper proposes a precise drone-positioning technique using a differential global positioning system (DGPS). The proposed system consists of a reference station for error correction data production, and a mobile station (a drone), which is the target for real-time positioning. The precise coordinates of the reference station were acquired by post-processing of received satellite data together with the reference station location data provided by government infrastructure. For the system's implementation, low-cost commercial GPS receivers were used. Furthermore, a Zigbee transmitter/receiver pair was used to wirelessly send control signals and error correction data, making the whole system affordable for personal use. To validate the system, a drone-tracking experiment was conducted. The results show that the average real-time position error is less than 0.8 m.

NC 공작기계 컨투어 운동 정도의 해석

  • 박준호
    • Journal of the KSME
    • /
    • v.32 no.5
    • /
    • pp.441-455
    • /
    • 1992
  • NC 공작기계의 운동정밀도는 키네마틱 트랜스듀서 링크 컨투어 측정시스템(Kinematic transducer link contour measuring system), BDD 측정시스템, Circular Test 등에 의해 측정될 수 있으며, 오차 발생원인을 규명할 수 있다. 이 글에서는 NC 공작기계의 오차가 컨투어 시험 결과에 미치는 영향을 평가하기 위하여, 공칭원(nominal circle) 혹은 공칭호(nominal arc)로부 터의 반경방향 편위를 포함하는 컨투어 운동결과를 이론적으로 해석하였다.

  • PDF

The Basic Study of Position Recognition Cow-teats Used Scanning Range Finder (레이저스캔 센서를 이용한 유두위치인식에 관한 기초연구)

  • Kim, Woong
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study was conducted to verify the applicability of robot milking system through acquisition and analysis of model teat's position information using scanning range finder (SRF). Model teats, same size and shape as real teats, were designed to analyze the properties according to the material, distance error and angle error of the sensor. In addition, 2-dimensional distance information of each teats was obtained at same time with 4 teat models and the result were as follows. 1. In the case of the fingers on the experiment for selection of materials for teat model, the distance error was from 4.3 mm to 1.3 mm, average was 2.8 mm as a minimum record. In the case of rubber material, average distance error was 4.3 mm. So, this material was considered to be a most suitable model. 2. The distance error was maximum at 100 mm distance. The more distance increased, the less error increased up to 300 mm. Then the error increased after 300 mm and decreased again. 3. The maximum angle error of 10.1 mm was measured at $170^{\circ}$, in case of $70^{\circ}$ the error was 0.2 mm as a minimum value. There was no specific tendency to error of angle. 4. In the 2-dimensional location error for 4 teat models, distance error was 3.8 mm as minimum and 7.2 mm as maximum. The angle error was $1.2^{\circ}$ as maximum. All of errors were included within the accuracy of sensor, the robot milking system was considered to be applicable to measure the distance of teats due to the measuring velocity of SRF and the hole size of teat-cup.

A Design of Information Guidance System by using Trimble Lassen-SK8 GPS (Trimble Lassen-SKB GPS를 이용한 정보안내 시스템의 설계)

  • 김동연;김진일
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.284-287
    • /
    • 2000
  • 본 논문에서는 Trimble Lassen-SK8 GPS 수신기로부터 측정된 위치정보를 수치지도에 표시하고 이로부터 정보안내 시스템을 설계하였다. 이 시스템에서는 특정위치에 대한 안내와 관련된 음성정보를 출력하고 그 지역을 벗어나는 경우에는 정보의 출력을 종료하도록 한다. GPS 의 수신오차는 원의 방정식을 사용하여 범위를 벗어나는 오차발생에 대한 처리가 가능하도록 했으며, 수치지도의 특정위치의 식별을 위해 Bessel TM 좌표를 WGS-84 경위도 좌표로 적용하였다. 본 논문의 결과는 학교안내 시스템에 적용시켰으며, 만족할만한 결과를 보였다.

  • PDF

Analysis and Compensation of Time Synchronization Error on SAR Image (시각 동기화 오차가 SAR 영상에 미치는 영향 분석 및 보상)

  • Lee, Soojeong;Park, Woo Jung;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.285-293
    • /
    • 2020
  • In this paper, to improve Synthetic Aperture Radar (SAR) image quality, the effect of time synchronization error in the EGI/IMU (Embedded GPS/INS, Inertial Measurement Unit) integrated system is analyzed and state augmentation is applied to compensate it. EGI/IMU integrated system is widely used as a SAR motion measurement algorithm, which consists of EGI mounted to obtain the trajectory and IMU mounted on the SAR antenna. In an EGI/IMU integrated system, a time synchronization error occurs when the clocks of the sensors are not synchronized. Analysis of the effect of time synchronization error on navigation solutions and SAR images confirmed that the time synchronization error deteriorates SAR image quality. The state augmentation is applied to compensate for this and as a result, the SAR image quality does not decrease. In addition, by analyzing the performance and the observability of the time synchronization error according to the maneuver, it was confirmed that the time-variant maneuver such as rotational motion is necessary to estimate the time synchronization error adequately. In order to reduce the influence of the time synchronization error on the SAR image, the time synchronization error must be compensated by performing maneuver changing over time such as a rotation before SAR operation.

A Study on the Distance Error Correction of Maritime Object Detection System (해상물체탐지시스템 거리오차 보정에 관한 연구)

  • Byung-Sun Kang;Chang-Hyun Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.139-146
    • /
    • 2023
  • Maritime object detection systems, which detects small maritime obstacles such as fish farm buoys and visualizes distance and direction, is equipped with a 3-axis gimbal to compensate for errors caused by hull motion, but there is a limit to distance error corrections necessitated by the vertical movement of the camera and the maritime object due to wave motions. Therefore, in this study, the distance error of maritime object detection systems caused by the movement of the water surface according to the external environment is analyzed and corrected using average filter and moving average filter. Random numbers following a Gaussian standard normal distribution were added to or subtracted from the image coordinates to reproduce the rise or fall of the buoy under irregular waves. The distance calculated according to the change of image coordinates, the predicted distance through the average filter and the moving average filter, and the actual distance measured by laser distance meter were compared. In phases 1 and 2, the error rate increased to a maximum of 98.5% due to the changes of image coordinates due to irregular waves, but the error rate decreased to 16.3% with the moving average filter. This error correction capability was better than with the average filter, but there was a limit due to failure to respond to the distance change. Therefore, it is considered that use of the moving average filter to correct the distance error of the maritime object detection system will enhance responses to the real-time distance change and greatly improve the error rate.