• Title/Summary/Keyword: 시스템 식별기술

Search Result 919, Processing Time 0.029 seconds

Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network (멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용)

  • Tae Jun Ha;Hee Sang Kim;Seong Uk Kang;DooHee Lee;Woo Jin Kim;Ki Won Moon;Hyun-Soo Choi;Jeong Hyun Kim;Yoon Kim;So Hyeon Bak;Sang Won Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.187-201
    • /
    • 2024
  • Osteoporosis is a major health issue globally, often remaining undetected until a fracture occurs. To facilitate early detection, deep learning (DL) models were developed to classify osteoporosis using abdominal computed tomography (CT) scans. This study was conducted using retrospectively collected data from 3,012 contrast-enhanced abdominal CT scans. The DL models developed in this study were constructed for using image data, demographic/clinical information, and multi-modality data, respectively. Patients were categorized into the normal, osteopenia, and osteoporosis groups based on their T-scores, obtained from dual-energy X-ray absorptiometry, into normal, osteopenia, and osteoporosis groups. The models showed high accuracy and effectiveness, with the combined data model performing the best, achieving an area under the receiver operating characteristic curve of 0.94 and an accuracy of 0.80. The image-based model also performed well, while the demographic data model had lower accuracy and effectiveness. In addition, the DL model was interpreted by gradient-weighted class activation mapping (Grad-CAM) to highlight clinically relevant features in the images, revealing the femoral neck as a common site for fractures. The study shows that DL can accurately identify osteoporosis stages from clinical data, indicating the potential of abdominal CT scans in early osteoporosis detection and reducing fracture risks with prompt treatment.

Locates the Sunken Ship 'Dmitri Donskoi' using Marine Geophysical Survey Techniques in Deep Water (지구물리 탐사기법을 이용한 심해 Dmitri Donskoi호 확인)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.104-117
    • /
    • 2004
  • Dmitri Donskoi, which went down during the Russo-Japanese War occurred 100 years ago, was found by using geophysical exploration techniques at the 400 m water depth of submarine valley off Jeodong of Ulleung Island. In the submarine area with the rugged seabed topography and volcanic seamounts, in particular, the reliable seabed images were acquired by using the mid-to-shallow Multibeam exploration technique The strength of corrosion (causticity) of the sunken Donskoi, measured by the electrochemical method, decreased to 2/5 compared with the original strength.

  • PDF

Analysis of Behavioral Characteristics of Broilers by Feeding, Drinking, and Resting Spaces according to Stocking Density using Image Analysis Technique (영상분석기법을 활용한 사육밀도에 따른 급이·급수 및 휴식공간별 육계의 행동특성 분석)

  • Kim, Hyunsoo;Kang, HwanKu;Kang, Boseok;Kim, ChanHo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.558-569
    • /
    • 2020
  • This study examined the frequency of a broiler's stay in each area as stock density using an ICT-based image analysis technique from the perspective of precision livestock farming (PLF) according to the increase in the domestic broiler farms to understand the normal behavior patterns of broilers by age. The broiler was used in the experimental box (3.3×2.7 m) in a poultry house in Gyeonggi province. The stock densities were 9.5 birds/㎡ (n=85) and 19 birds/㎡ (n=170), respectively, and the frequency of stay by feeding, water, and rest area was monitored using a top-view camera. The image data of three-colored-specific broilers identified as the stock density were acquired by age (12, 16, 22, 27, and 29 days) for six hours. In the collected image data, the object tracking technique was used to record the cumulative movement path by connecting approximately 640,000 frames at 30 fps to quantify the frequency of stay in each area. In each stock density, it was significant in the order of the rest area, feeding, and water area (p<0.001). In 9.5 birds/㎡, it was at 57.9, 24.2, and 17.9 %, and 73.2, 16.8, and 10 % in 19 birds/㎡. The frequency of a broiler's stay could be evaluated in each area as the stock density using an ICT-based image analysis technique that minimizes stress. This method is expected to be used to provide basic material for developing an ICT-based management system through real-time monitoring.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링)

  • Song, Seung Yeob;Jie, Eun Yee;Ahn, Myung Suk;Kim, Dong Jin;Kim, In Jung;Kim, Suk Weon
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.105-114
    • /
    • 2014
  • We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

Identification and Chromosomal Reshuffling Patterns of Soybean Cultivars Bred in Gangwon-do using 202 InDel Markers Specific to Variation Blocks (변이영역 특이 202개 InDel 마커를 이용한 강원도 육성 콩 품종의 판별 및 염색체 재조합 양상 구명)

  • Sohn, Hwang-Bae;Song, Yun-Ho;Kim, Su-Jeong;Hong, Su-Young;Kim, Ki-Deog;Koo, Bon-Cheol;Kim, Yul-Ho
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.396-405
    • /
    • 2018
  • The areas of soybean (Glycine max (L.) Merrill) cultivation in Gangwon-do have increased due to the growing demand for well-being foods. The soybean barcode system is a useful tool for cultivar identification and diversity analysis, which could be used in the seed production system for soybean cultivars. We genotyped cultivars using 202 insertion and deletion (InDel) markers specific to dense variation blocks (dVBs), and examined their ability to identify cultivars and analyze diversity by comparison to the database in the soybean barcode system. The genetic homology of "Cheonga," "Gichan," "Daewang," "Haesal," and "Gangil" to the 147 accessions was lower than 81.2%, demonstrating that these barcodes have potentiality in cultivar identification. Diversity analysis of one hundred and fifty-three soybean cultivars revealed four subgroups and one admixture (major allele frequency <0.6). Among the accessions, "Heugcheong," "Hoban," and "Cheonga" were included in subgroup 1 and "Gichan," "Daewang," "Haesal," and "Gangil" in the admixture. The genetic regions of subgroups 3 and 4 in the admixture were reshuffled for early maturity and environmental tolerance, respectively, suggesting that soybean accessions with new dVB types should be developed to improve the value of soybean products to the end user. These results indicated that the two-dimensional barcodes of soybean cultivars enable not only genetic identification, but also management of genetic resources through diversity analysis.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site (사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로)

  • Byun, Sungho;Lee, Donghoon;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.23-43
    • /
    • 2016
  • As a result of the growth of Internet data and the rapid development of Internet technology, "big data" analysis has gained prominence as a major approach for evaluating and mining enormous data for various purposes. Especially, in recent years, people tend to share their experiences related to their leisure activities while also reviewing others' inputs concerning their activities. Therefore, by referring to others' leisure activity-related experiences, they are able to gather information that might guarantee them better leisure activities in the future. This phenomenon has appeared throughout many aspects of leisure activities such as movies, traveling, accommodation, and dining. Apart from blogs and social networking sites, many other websites provide a wealth of information related to leisure activities. Most of these websites provide information of each product in various formats depending on different purposes and perspectives. Generally, most of the websites provide the average ratings and detailed reviews of users who actually used products/services, and these ratings and reviews can actually support the decision of potential customers in purchasing the same products/services. However, the existing websites offering information on leisure activities only provide the rating and review based on one stage of a set of evaluation criteria. Therefore, to identify the main issue for each evaluation criterion as well as the characteristics of specific elements comprising each criterion, users have to read a large number of reviews. In particular, as most of the users search for the characteristics of the detailed elements for one or more specific evaluation criteria based on their priorities, they must spend a great deal of time and effort to obtain the desired information by reading more reviews and understanding the contents of such reviews. Although some websites break down the evaluation criteria and direct the user to input their reviews according to different levels of criteria, there exist excessive amounts of input sections that make the whole process inconvenient for the users. Further, problems may arise if a user does not follow the instructions for the input sections or fill in the wrong input sections. Finally, treating the evaluation criteria breakdown as a realistic alternative is difficult, because identifying all the detailed criteria for each evaluation criterion is a challenging task. For example, if a review about a certain hotel has been written, people tend to only write one-stage reviews for various components such as accessibility, rooms, services, or food. These might be the reviews for most frequently asked questions, such as distance between the nearest subway station or condition of the bathroom, but they still lack detailed information for these questions. In addition, in case a breakdown of the evaluation criteria was provided along with various input sections, the user might only fill in the evaluation criterion for accessibility or fill in the wrong information such as information regarding rooms in the evaluation criteria for accessibility. Thus, the reliability of the segmented review will be greatly reduced. In this study, we propose an approach to overcome the limitations of the existing leisure activity information websites, namely, (1) the reliability of reviews for each evaluation criteria and (2) the difficulty of identifying the detailed contents that make up the evaluation criteria. In our proposed methodology, we first identify the review content and construct the lexicon for each evaluation criterion by using the terms that are frequently used for each criterion. Next, the sentences in the review documents containing the terms in the constructed lexicon are decomposed into review units, which are then reconstructed by using the evaluation criteria. Finally, the issues of the constructed review units by evaluation criteria are derived and the summary results are provided. Apart from the derived issues, the review units are also provided. Therefore, this approach aims to help users save on time and effort, because they will only be reading the relevant information they need for each evaluation criterion rather than go through the entire text of review. Our proposed methodology is based on the topic modeling, which is being actively used in text analysis. The review is decomposed into sentence units rather than considering the whole review as a document unit. After being decomposed into individual review units, the review units are reorganized according to each evaluation criterion and then used in the subsequent analysis. This work largely differs from the existing topic modeling-based studies. In this paper, we collected 423 reviews from hotel information websites and decomposed these reviews into 4,860 review units. We then reorganized the review units according to six different evaluation criteria. By applying these review units in our methodology, the analysis results can be introduced, and the utility of proposed methodology can be demonstrated.