DOI QR코드

DOI QR Code

Discrimination of African Yams Containing High Functional Compounds Using FT-IR Fingerprinting Combined by Multivariate Analysis and Quantitative Prediction of Functional Compounds by PLS Regression Modeling

FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 고기능성 아프리칸 얌 식별 및 기능성 성분 함량 예측 모델링

  • Song, Seung Yeob (Greenbio Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jie, Eun Yee (Greenbio Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Myung Suk (Greenbio Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Dong Jin (School of Life Sciences and Bioengineering, The Nelson Mandela African Institute of Science and Technology) ;
  • Kim, In Jung (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Kim, Suk Weon (Microbiological Resource Center, Korea Research Institute of Bioscience and Biotechnology)
  • 송승엽 (한국생명공학연구원 그린바이오연구센터) ;
  • 지은이 (한국생명공학연구원 그린바이오연구센터) ;
  • 안명숙 (한국생명공학연구원 그린바이오연구센터) ;
  • 김동진 (탄자니아 넬슨만델라 아프리카과학기술원 생명공학대학) ;
  • 김인중 (제주대학교 일반대학원 생명공학과) ;
  • 김석원 (한국생명공학연구원 미생물자원센터)
  • Received : 2013.07.03
  • Accepted : 2013.10.01
  • Published : 2014.02.28

Abstract

We established a high throughput screening system of African yam tuber lines which contain high contents of total carotenoids, flavonoids, and phenolic compounds using ultraviolet-visible (UV-VIS) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy in combination with multivariate analysis. The total carotenoids contents from 62 African yam tubers varied from 0.01 to $0.91{\mu}g{\cdot}g^{-1}$ dry weight (wt). The total flavonoids and phenolic compounds also varied from 12.9 to $229{\mu}g{\cdot}g^{-1}$ and from 0.29 to $5.2mg{\cdot}g^{-1}$dry wt. FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and $1,100-950cm^{-1}$, respectively. These spectral regions were reflecting the quantitative and qualitative variations of amide I, II from amino acids and proteins ($1,700-1,500cm^{-1}$), phosphodiester groups from nucleic acid and phospholipid ($1,500-1,300cm^{-1}$) and carbohydrate compounds ($1,100-950cm^{-1}$). Principal component analysis (PCA) and subsequent partial least square-discriminant analysis (PLS-DA) were able to discriminate the 62 African yam tuber lines into three separate clusters corresponding to their taxonomic relationship. The quantitative prediction modeling of total carotenoids, flavonoids, and phenolic compounds from African yam tuber lines were established using partial least square regression algorithm from FT-IR spectra. The regression coefficients ($R^2$) between predicted values and estimated values of total carotenoids, flavonoids and phenolic compounds were 0.83, 0.86, and 0.72, respectively. These results showed that quantitative predictions of total carotenoids, flavonoids, and phenolic compounds were possible from FT-IR spectra of African yam tuber lines with higher accuracy. Therefore we suggested that quantitative prediction system established in this study could be applied as a rapid selection tool for high yielding African yam lines.

본 연구에서는 UV-VIS spectrophotometer를 이용한 total carotenoids, flavonoids, phenolics 함량 데이터와 FT-IR 스펙트럼 데이터를 다변량통계분석법을 통하여 기능성 성분 함량이 높은 아프리칸 얌 고속 선발 시스템을 구축하였다. 62개 아프리칸 얌의 total carotenoids 함량은 $0.01-0.91{\mu}g{\cdot}g^{-1}$ dry wt 나타냈다. Total flavonoids와 phenolics 함량은 $12.9-229.0{\mu}g{\cdot}g^{-1}$ dry wt와 $0.29-5.2mg{\cdot}g^{-1}$ dry wt로 각각 나타났다. 아프리칸 얌은 FT-IR 스펙트럼상의 1700-1500, 1500-1300, $1,100-950cm^{-1}$, 부위에서 중요한 스펙트럼 변화가 나타났다. 이 부위는 각각 amide I과 II을 포함하는 아미노산 및 단백질계열의 화합물, phosphodiester group을 포함한 핵산 및 인지질 그리고 단당류나 복합 다당류를 포함하는 carbohydrates 계열의 화합물들의 질적, 양적 정보를 반영하는 부위이다. PCA 분석과 PLS-DA 분석에서 62개 아프리칸 얌은 유연성이 높은 종으로 3개의 그룹을 형성하였다. 아프리칸 얌의 FT-IR 스펙트럼 데이터와 UV-VIS spectrophotometer을 이용한 total carotenoids, flavonoids, phenolics 함량 데이터 간에 PLS regression 분석하였다. Total carotenoids, flavonoids, phenolics 함량 성분의 실측 값과 예측 값간에 상관계수($R^2$)가 각각 0.83, 0.86, 0.72로 나타났다. 이 결과, 아프리칸 얌으로부터 FT-IR 스펙트럼을 이용한 total carotenoids, flavonoids, phenolics 함량 예측이 가능하였다. 본 연구에서 확립된 대사체 수준에서 아프리칸 얌의 유용 기능성 성분 함량 예측 모델링을 통해 품종, 계통의 신속한 선발 수단으로 활용이 가능할 것으로 예상된다.

Keywords

References

  1. Adeleke, R.O. 2010. Current position of sanitations in nigerian food Industries. Pak. J. Nutr. 9:664-667. https://doi.org/10.3923/pjn.2010.664.667
  2. Aktumsek, A., G. Zengin, G.O. Guler, Y.S. Cakmak, and A. Duran. 2013. Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from Turkey. Food Chem. 141:91-97. https://doi.org/10.1016/j.foodchem.2013.02.092
  3. Argyri, A.A., R.M. Jarvis, D. Wedge, Y. Xu, E.Z. Panagou, R. Goodacre, and G.J.E. Nychas. 2013. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Control 29:461-470. https://doi.org/10.1016/j.foodcont.2012.05.040
  4. Bastiena, P., V.E. Vinzi, and M. Tenenhaus. 2005. PLS generalised linear regression. Computational Stat. Data Analysis 48:17-46. https://doi.org/10.1016/j.csda.2004.02.005
  5. Chen, Y., M. Xie, H. Zhang, Y. Wang, S. Nie, and C. Li. 2012. Quantification of total polysaccharides and triterpenoids in Ganoderma lucidum and Ganoderma atrum by near infrared spectroscopy and chemometrics. Food Chem. 135:268-275. https://doi.org/10.1016/j.foodchem.2012.04.089
  6. D'Souza, L., P. Devi, M.P.D. Shridhar, and C.G. Naik. 2008. Use of Fourier Transform Infrared (FTIR) spectroscopy to study cadmium-Induced changes in Padina Tetrastromatica (Hauck) Anal. Chem. Insights 3:135-143.
  7. Dumas, P. and L. Miller. 2003. The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib. Spec. 32:3-21. https://doi.org/10.1016/S0924-2031(03)00043-2
  8. Fiehn, O., J. Kopka, P. Drmann, T. Altmann, R. Trethewey, and L. Willmitzer. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157-1161. https://doi.org/10.1038/81137
  9. Gallardo-Velazquez, T., G. Osorio-Revilla, M. Zuniga de Loa, and Y. Rivera-Espinoza. 2009. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res. Intl. 42:313-318. https://doi.org/10.1016/j.foodres.2008.11.010
  10. Hoskuldsson, A. 1988. PLS regression methods. J. Chemometrics 2:211-228. https://doi.org/10.1002/cem.1180020306
  11. Im, S.A., Y.H. Kim, S.H. Oh, T.K. Ha, and M.J. Lee. 1995. The study on the comparisions of ingredients in yam and bitter taste material of African yam. J. Kor. Soc. Food Nutr. 24:74-81.
  12. Mevik, B.H. and R. Wehrens. 2007. The pls package: Principal component and partial least squares regression in R. J. Stat. Software 18(1):1-24. https://doi.org/10.1360/jos180001
  13. Kim, J.I., H.S. Jang, J.S. Kim, and H.Y. Sohn. 2009. Evaluation of antimicrobial, antithrombin, and antioxidant activity of Dioscorea batatas Decne. Kor. J. Microbiol. Biotechnol. 37:133-139.
  14. Kimura, M. and D.B. Rodriguez-Amaya. 2002. A scheme for obtaining standards and HPLC quantification of leafy vegetable carotenoids. Food Chem. 78:389-398. https://doi.org/10.1016/S0308-8146(02)00203-0
  15. Kofalvi, S.A. and A. Nassuth. 1995. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol. Mol. Plant Pathol. 47:365-377. https://doi.org/10.1006/pmpp.1995.1065
  16. Krishnan, P., N.J. Kruger, and R.G. Ratcliffe. 2005. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56:255-265.
  17. Kum, E.J., S.J. Park, B.H. Lee, J.S. Kim, K.H. Son, and H.Y. Sohn. 2006. Antifungal activity of phenanthrene derivatives from aerial bulbils of Diascroea batatas Decne. J. Life Sci. 16:647-652. https://doi.org/10.5352/JLS.2006.16.4.647
  18. Kwon, J.B., M.S. Kim, and H.Y. Sohn. 2010. Evaluation of antimicrobial, antioxidant, and antithrombin activities of the rhizome of various Dioscorea species. Kor. J. Food Preserv. 17:391-397.
  19. Leopold, L.F., N. Leopold, H.-A. Diehl, and C. Socaciu. 2011. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. Spectroscopy 26:93-104. https://doi.org/10.1155/2011/285890
  20. Lichtenthaler, H.K. and C. Buschmann. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Prot. Food Anal. Chem. F4.3.1-F 4.3.8.
  21. Lopez-Sanchez, M., M.J. Ayora-Canada, and A. Molina-Diaz. 2010. Olive fruit growth and ripening as seen by vibrational spectroscopy. J. Agric. Food Chem. 58:82-87. https://doi.org/10.1021/jf902509f
  22. Parker, F.S. 1983. Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry. Plenum Press, New York.
  23. Pascoa, R.N.M.J., L.M. Magalhaes, and J.A. Lopes. 2013. FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: Application to assessment of antioxidant properties. Food Res. Intl. 51:579-586. https://doi.org/10.1016/j.foodres.2013.01.035
  24. Song, H.P., B.D. Kim, E.H. Shin, D.S. Song, H.J. Lee, and D.H. Kim. 2010. Effect of gamma irradiation on the microbiological and general quality characteristics of fresh yam juice. Kor. J. Food Preserv. 17:494-499.
  25. Stadnik, M.J. and H. Buchenauer. 2000. Inhibition of phenylalanine ammonia-lyase suppresses the resistance induced by benzothiadiazole in wheat to Blumeria graminis f. sp. tritici. Physiol. Mol. Plant Pathol. 57:25-34. https://doi.org/10.1006/pmpp.2000.0276
  26. Trygg, J., E. Holmes, and T. Londstedt. 2007. Chemometrics in metabonomics. J. Proteomes Res. 6:467-479.
  27. Wold, H. 1966. Estimation of principal components and related models by iterative least squares, p. 391-420. In: K.R. Krishnaiah (ed.). Multivariate analysis. Academic Press, New York.
  28. Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Lab. Systems 58:109-130.
  29. Wolkers, W.F., A.E. Oliver, F. Tablin, and J.H. Crowe. 2004. A fourier transform infrared spectroscopy study of sugar glasses. Carb. Res. 339:1077-1085. https://doi.org/10.1016/j.carres.2004.01.016
  30. Wu, C.H., H.N. Murthy, E.J. Hahn, and K.Y. Paek. 2007. Improved production of caffeic acid derivatives in suspension cultures of Echinacea purpurea by medium replenishment strategy. Arch. Pharm. Res. 30:945-949. https://doi.org/10.1007/BF02993961
  31. Yang, C.M., K.W. Chang, M.H. Yin, and H.M. Huang. 1998. Methods for the determination of the chlorophylls and their derivatives. Taiwania 43:116-122.
  32. Yang, M.H., K.D. Yoon, Y.W. Chin, and J.W. Kim. 2009. Phytochemical and pharmacological profiles of Dioscorea species in Korea, China and Japan. Kor. J. Pharmacogn. 40:257-279.
  33. Yao, L.H., Y.M. Jiang, J. Shi, F.A. Tomas-Barberan, N. Datta, R. Singanusong, and S.S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods Human Nutr. 59:113-122. https://doi.org/10.1007/s11130-004-0049-7
  34. Yee, N., L.G. Benning, V.R. Phoenix, and F.G. Ferris. 2004. Characterization of metal-Cyanobacteria sorption reactions: A combined macroscopic and infrared spectroscopic investigation. Environ. Sci. Technol. 38:775-82. https://doi.org/10.1021/es0346680
  35. Yoon, K.B. and J.K. Jang. 1989. Wild vegetables good for health. Seokoh Publihing Co., Seoul, Korea. p. 334.
  36. Yuan, J., C. Wang, H. Chen, H. Zhou, and J. Ye. 2013. Prediction of fatty acid composition in Camellia oleifera oil by near infrared transmittance spectroscopy (NITS). Food Chem. 138: 1657-1662. https://doi.org/10.1016/j.foodchem.2012.11.096
  37. Zhishen, J., T. Mengcheng, and W. Jianming. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  38. Zude, M., L. Spinelli, and A. Torricelli. 2008. Approach for non-destructive pigment analysis in model liquids and carrots by means of time-of-flight and multi-wavelength remittance readings. Analytica Chimica Acta 623:204-212. https://doi.org/10.1016/j.aca.2008.06.014

Cited by

  1. FT-IR 스펙트럼 데이터 기반 다변량통계분석기법을 이용한 아티초크의 대사체 수준 품종 분류 vol.34, pp.2, 2016, https://doi.org/10.12972/kjhst.20160033