DOI QR코드

DOI QR Code

Contents of Bioactive Constituents and Antioxidant Activities of Cultivated and Wild Raspberries

재배종 및 야생 산딸기의 기능성 성분 함량과 항산화 활성

  • Lee, Heon Ho (Department of Forest Resources, Yeungnam University) ;
  • Moon, Yong Sun (Department of Horticulture and Life Science, Yeungnam University) ;
  • Yun, Hae Keun (Department of Horticulture and Life Science, Yeungnam University) ;
  • Park, Pil Jae (Bokbunja Experimental Station) ;
  • Kwak, Eun Jung (Department of Food Science and Technology, Yeungnam University)
  • Received : 2013.07.22
  • Accepted : 2013.10.01
  • Published : 2014.02.28

Abstract

In order to select the raspberry cultivars that have high contents of bioactive constituents and high antioxidant activities, 7 cultivated and 2 wild raspberries which were selected and cultivated in the Bokbunja Institute were evaluated for their physicochemical characteristics, bioactive constituents, and antioxidant activities. The wild raspberry of Asan was the smallest among the sample raspberries but it had the highest sugar and lowest acid contents among the raspberries. Another wild raspberry of Ulleungdo had the highest total phenolic compound and ellagic acid contents, 182.97, $55.25mg{\cdot}100g^{-1}FW$, respectively, although it was small and had low sugar and high acid contents. Among the widely cultivated raspberry cultivars in Kimhae, 'Wangttal' cultivar was a big raspberry with 12.80% sugar content, and another unknown raspberry cultivar was as small as the wild raspberry with 14.60% sugar content. Although 'Wangttal' and the unknown raspberry cultivars cultivated in Kimhae possess lower contents of total phenolic compound (159.62, $165.94mg{\cdot}100g^{-1}$) and ellagic acid (45.7, $52.1mg{\cdot}100g^{-1}$ ) than the wild raspberry of Ulleungdo, the contents of total flavonoids (14.28, $14.90mg{\cdot}100g^{-1}$) and total anthocyanins (28.69, $30.48mg{\cdot}100g^{-1}$) were higher. Also the wild raspberry of Ulleungdo, 'Wangttal', and the unknown raspberry cultivar of Kimhae had higher antioxidant activities measured by FRAP (Ferric reducing antioxidant power), DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2' azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) assays. The present study shows that three raspberry cultivars could be potent resources for raspberry breeding and functional material development.

유용성분 함량이 많고 생리기능성이 우수한 산딸기 품종의 육성을 위해 국내 농가에서 재배되고 있는 7종의 산딸기와 야생에서 자생하는 2종의 산딸기를 복분자 연구소에서 재배한 후 이들을 대상으로 과실의 품질특성, 유용성분의 함량, 항산화능을 측정하였다. 충남 아산의 야생 산딸기가 크기는 작았지만 당도는 16.20%로 시료 산딸기 중 가장 높고 산도는 가장 낮았다. 경북 울릉도의 야생 산딸기는 작은 크기에 당도 및 산도가 매우 낮아 과실로서의 이용가치는 매우 낮았으나, 총 페놀성 화합물과 ellagic acid 함량은 각각 182.97, $55.25mg{\cdot}100g^{-1}FW$로 시료 중 가장 높았다. 경남 김해에서 재배되는 산딸기 중 '왕딸'은 크기가 크고 당도는 12.80%로 다소 낮은 반면, 품종이 불명확한 다른 산딸기는 야생 산딸기 정도로 크기는 작지만 당도는 14.4%로 '왕딸' 보다 높았다. 김해 지역에서 재배되는 '왕딸'과 품종이 불명확한 산딸기의 총 페놀성 화합물(159.62, $165.94mg{\cdot}100g^{-1}FW$) 및 ellagic acid(45.7, $52.1mg{\cdot}100g^{-1}FW$) 함량은 울릉도 야생 산딸기보다 낮았으나, 총 플라보노이드 화합물(14.28, $14.90mg{\cdot}100g^{-1}FW$)과 총 안토시아닌(28.69, $30.48mg{\cdot}100g^{-1}FW$) 함량은 이보다 높았다. 경북 울릉도 야생 산딸기, 김해 지역의 '왕딸' 및 품종이 불명확한 산딸기는 FRAP법에 의한 항산화능과 DPPH 및 ABTS radical 소거능도 다른 품종의 산딸기보다 현저하게 높아 육종 소재 및 기능성 성분 소재로서의 이용 가치가 높은 것으로 사료된다.

Keywords

References

  1. Ancos de, B., E.M. Gonzalez, and M.P. Cano. 2000. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 48:4565-4570. https://doi.org/10.1021/jf0001684
  2. Anttonen, M.J. and R.O. Karjalainen. 2005. Environmental and genetic variation of phenolic compounds in red raspberry. J. Food Comps. Anal. 18:759-769. https://doi.org/10.1016/j.jfca.2004.11.003
  3. Arnous, A., D.P. Makris, and P. Kefalas. 2001. Effect of principal polyphenol components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 49:5736-5742. https://doi.org/10.1021/jf010827s
  4. Benzie, I.F. and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239:70-76. https://doi.org/10.1006/abio.1996.0292
  5. Bobinaitė, R., P. Viškelis, and P.R. Venskutonis. 2012. Variation of total phenolics, anthocyanins, ellagic acid, and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 132:1495-1501. https://doi.org/10.1016/j.foodchem.2011.11.137
  6. Brand-Williams, W., M.E. Cuvelier, and C. Berset. 1995. Use of a free-radical method to evaluate antioxidant activity. LWTFood Sci. Technol. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  7. Cekic, C. and M. Ozen. 2010. Comparison of antioxidant capacity and phytochemical properties of wild and cultivated red raspberries (Rubus idaeus L.). J. Food Comps. Anal. 23:540-544. https://doi.org/10.1016/j.jfca.2009.07.002
  8. Cha, H.S., M.K. Lee, J.B. Hwang, M.S. Park, and K.M. Park. 2001. Physicochemical characteristics of Rubus coreanus Miquel. J. Korean Soc. Food Sci. Nutr. 30:1021-1025.
  9. Deighton, N., R. Brennan, and H.D. Davies. 2000. Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agric. 80:1307-1313. https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P
  10. Fan, Z.L., Z.Y. Wang, and J.R. Liu. 2011. Cold-field fruit extracts exert different antioxidant and antiproliferative activities in vitro. Food Chem. 129:402-407. https://doi.org/10.1016/j.foodchem.2011.04.091
  11. Haffner, K., H.J. Rosenfeld, G. Skrede, and L. Wang. 2002. Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biol. Tec. 24:279-289. https://doi.org/10.1016/S0925-5214(01)00147-8
  12. Han, W.C., S.H. Ji, J. Surh, M.H. Kim, J.C. Lee, S.H. Kim, and K.H. Jang. 2010. Effect of supplementation of Rubus crataegifolius on fermentation characteristics of Rosa rugosa wine. J. East Asian Dietary Life 20:321-327.
  13. Jeong, J.H., H. Jung, S.R. Lee, H.J. Lee, K.T. Hwang, and T.Y. Kim. 2010. Anti-oxidant, anti-proliferative, and anti-inflammatory activities of the extracts from black berry fruits and wine. Food Chem. 123:338-344. https://doi.org/10.1016/j.foodchem.2010.04.040
  14. Khanizadeh, S., D. Rekika, B. Ehsani-Moghaddam, R. Tsao, R. Yang, M.T. Charles, J.A. Sullivan, L. Gauthier, A. Gosselin, A.M. Potel, G. Reynaud, and E. Thomas. 2009. Horticultural characteristics and chemical composition of advanced raspberry lines from Quebec and Otario. LWT-Food Sci. Technol. 42: 893-898. https://doi.org/10.1016/j.lwt.2008.08.016
  15. Kim, S.K., R.N. Bae, H.S. Hwang, M.J. Kim, H.R. Sung, and C.H. Chun. 2010. Comparison of bioactive compounds contents in different fruit tissues of June-bearing strawberry cultivars. Kor. J. Hort. Sci. Technol. 28:948-953.
  16. Landete, J.M. 2011. Ellagitannins, ellagic acid, and their derived metabolites: A review about source, metabolism, functions and health. Food Res. Int. 44:1150-1160. https://doi.org/10.1016/j.foodres.2011.04.027
  17. Lee, J.W. and J.H. Do. 2000. Determination of total phenolic compounds from the fruit of Rubus coreanum and antioxidative activity. J. Korean Soc. Food Sci. Nutr. 29:943-947.
  18. Pantelidis, G.E., M. Vasilakakis, G.A. Manganaris, and Gr. Diamantidis. 2007. Antioxidant capacity, phenol, anthocyanin, and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries, and Cornelian cherries. Food Chem. 102:777-783. https://doi.org/10.1016/j.foodchem.2006.06.021
  19. Shen, Y., L. Jin, P. Xiao, Y. Lu, and J. Bao. 2009. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size, and weight. J. Cereal Sci. 49:106-111. https://doi.org/10.1016/j.jcs.2008.07.010
  20. Suthanthangjai, W., P. Kajda, and I. Zabetakis. 2005. The effect of high hydrostatic pressure on the anthocyanins of raspberry (Rubus idaeus). Food Chem. 90:193-197. https://doi.org/10.1016/j.foodchem.2004.03.050
  21. Tosun, M., S. Ercisli, H. Karlidag, and M. Sengul. 2009. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J. Food Sci. 74:C575-C579. https://doi.org/10.1111/j.1750-3841.2009.01297.x
  22. Vaya, J., P.A. Belinky, and M. Aviram. 1997. Antioxidant constituents from licorice roots: Isolation, structure elucidation and antioxidative capacity toward LDL oxidation. Free Radical Biol. Med. 23:302-313. https://doi.org/10.1016/S0891-5849(97)00089-0
  23. Wang, S.Y., C.T. Chen, and C.Y. Wang. 2009. The influence of light and maturity on fruit quality and flavonoid content of red raspberries. Food Chem. 90:676-684.
  24. Yang, H.M., S.S. Lim, Y.S. Lee, H.K. Shin, Y.S. Oh, and J.K. Kim. 2007. Comparison of the anti-inflammatory effects of the extracts from Rubu scoreanus and Rubus occidenralis. Korean J. Food Sci. Technol. 39:342-347.
  25. Zafrilla, P., F. Ferreres, and F.A. Tomas-Barberan. 2001. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J. Agric. Food Chem. 49:3651-3655. https://doi.org/10.1021/jf010192x
  26. Zhang, L., J. Li, S. Hogan, H. Chung, G.E. Welbaum, and K. Zhou. 2010. Inhibitory effect of raspberries on starch digestive enzyme and their antioxidant properties and phenolic composition. Food Chem. 119:592-599. https://doi.org/10.1016/j.foodchem.2009.06.063

Cited by

  1. Bioactive Component Analysis, Antioxidant Activity, and Cytotoxicity on Cancer Cells on Rubus crataegifolius Clones by Region vol.105, pp.2, 2016, https://doi.org/10.14578/jkfs.2016.105.2.193
  2. Variation of Phenolics Contents and Antioxidant Activity of Vaccinium oldhamii Miq. vol.105, pp.2, 2016, https://doi.org/10.14578/jkfs.2016.105.2.208
  3. Quality Characteristics of Dried Noodle Prepared with Strawberry Powder vol.31, pp.1, 2016, https://doi.org/10.7318/KJFC/2016.31.1.088
  4. Bioactivities and Health Benefits of Wild Fruits vol.17, pp.8, 2016, https://doi.org/10.3390/ijms17081258
  5. Comparison of ellagic acid contents in Korean and Chinese cultivated species of unripe black raspberries vol.25, pp.5, 2018, https://doi.org/10.11002/kjfp.2018.25.5.549
  6. Quality Properties and Antioxidant Activities of Yakju Added with Jujube Paste with Different Heating Time vol.29, pp.2, 2019, https://doi.org/10.17495/easdl.2019.4.29.2.120
  7. Analytical method validation of ellagic acid as an antioxidative marker compound of the Rubus occidentalis extract vol.28, pp.5, 2014, https://doi.org/10.11002/kjfp.2021.28.5.663