• Title/Summary/Keyword: 시스템 성능해석

Search Result 2,180, Processing Time 0.032 seconds

Prediction of the Performance Distributions and Manufacturing Yields of a MEMS Accelerometer (MEMS 가속도계의 성능분포 및 제조수율 예측)

  • Kim, Yong-Il;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.791-798
    • /
    • 2011
  • All mechanical-system parameters have uncertainty, and this uncertainty directly affects system performances and results in a decrease in the manufacturing outputs. In particular, since the size of a MEMS system is extremely small, the manufacturing tolerances of a MEMS system are relatively large when compared to the tolerances of a macro-scale system. High manufacturing tolerances result from an increase in the uncertainty of the system parameters, thereby affecting the performances and manufacturing yields. In this paper, the performance uncertainty of a MEMS accelerometer due to system parameter uncertainty is analyzed by using several uncertainty analysis methods. Finally, the performance distributions and manufacturing yields of the MEMS accelerometer are predicted.

Study on the Performance of 1.4L Gasoline Engine Intake-Manifold (1.4L급 가솔린 엔진용 흡기매니폴드의 성능에 관한 연구)

  • Park, Yun-Seo;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.992-995
    • /
    • 2010
  • 엔진 흡기시스템 중 흡기매니폴드는 가솔린엔진의 성능을 결정하는 매우 중요한 성능 인자이다. 본 연구에서는 1400cc급 가솔린 엔진용 흡기 매니폴드에 대한 유동해석과 리그 실험을 수행하였다. 압력차에 따른 유동 및 유량계수의 해석을 통하여 유동특성을 분석하였으며 실험적 평가를 통하여 공기유량계수의 결과치를 검증하였다. 해석과 실험 결과를 비교 분석하여, 해석값과 실험값의 오차를 확인하였다.

  • PDF

Analysis of inducton heater with stacked cores (적층형 코어를 갖는 유도가열기의 해석)

  • Park, Hui-Chang;Yun, Dong-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.909-910
    • /
    • 2006
  • 본 논문에서는 액체의 가열을 위한 유도가열기에서 와전류가 발생하는 중심코어의 형태에 따른 유도가열기의 성능을 비교하였다. 특히 코어가 여러 층의 도체로 이루어졌을 경우의 시스템 성능의 변화에 대한 해석과 실험을 수행하였다. 유도가열의 수치적인 해석은 상용 프로그램인 Maxwell을 사용하였으며, 실험을 통하여 유한요소해석 모델을 검증하였다. 본 연구를 통하여 가열되는 코어가 여러 층으로 이루어져 있을 경우 유도가열기의 성능이 향상됨을 알 수 있었다.

  • PDF

Study on Analysis and Evaluation of Performance for Evacuated Tubular Solar Collector System (진공관형 태양열 집열장치의 성능평가 및 해석 연구)

  • Chun, Tae-Kyu;Ahn, Young-Chull
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2013
  • The thermal performance for test system with evacuated tubular solar collector is experimentally investigated to obtain the basis data for developing new type solar collector. For this purpose, the test system was designed using CATIA and then after being manufactured, the system was tested using evacuated tubular solar collector. Numerical analysis, furthermore, was performed using ANSYS Fluent V.13 for glass evacuated tubular solar collector. The results showed that as setting temperature difference(${\Delta}T$) of system was increased, total operating(working) time was almost same in all cases, even though operating count was decreased. The results of numerical analysis showed that as temperature of solar absorber in glass evacuated tubular solar collector was high, the drop-rate of temperature of center part was increased.

Performance Evaluation of Opportunistic Incremental Relaying Systems by using Partial and Full Channel Information in Rayleigh Fading Channels (레일레이 페이딩 채널에서 부분 및 전체 채널 정보를 이용하는 기회전송 증가 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.71-78
    • /
    • 2013
  • Recently, the opportunistic incremental relaying systems have been studied to improve the system performance effectively in wireless fading channel. Most of the performance analysis of the system includes a source-destination direct link. And there are few analysis which consider source-relay-destination indirect paths only. Therefore this paper proposes a transmission protocol which relays the source information using the selected relay from the partial channel information at the first stage in an opportunistic incremental relaying system. If the transmission fails, the selected best relay from the full channel information retransmits the information to the destination incrementally. The performance of the proposed system is derived analytically and verified from Monte Carlo simulation. The derived results can be applied to the system design and the performance estimation of the mobile systems and the bidirectional TV broadcasting systems which adapt an opportunistic incremental relaying system.

EDISON CFD를 이용한 100 kW 수평축 조류발전 터빈 주위 유동 해석

  • O, Seung-Jin;Nam, Gwon-U
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.15-18
    • /
    • 2016
  • 본 연구는 조류발전 터빈의 블레이드 형상 최적화 해석 시스템 개발에 대한 사전연구의 일환으로 EDISON CFD의 프로펠러 단독성능 S/W와 SNUFOAM ShipMesh Advanced 자동격자생성기를 이용하여 조류발전 터빈 주위 유동장에 대한 수치해석을 수행하였다. TSR 조건 변화에 따라 수치해석을 수행하고 이에 대한 power, total coefficient를 동일한 조건에서 수행된 실험결과와 비교 검증하여 해석자의 신뢰도를 확인하였다. 또한, 블레이드 전체를 모델링한 full body 해석과 하나의 블레이드만을 모델링한 single body 해석 결과를 비교하여 경제적이면서 정도 높은 터빈 성능해석 프로세스를 제안하였다. 조류발전 터빈의 TSR 조건 변화에 따라 낮은 TSR 조건에서는 국부적 와동발생에 의해 $C_P$가 감소하는 것을 확인하였고 설계 TSR에서 가장 좋은 효율을 보임을 확인하였다. 이를 통해 suction side의 압력 분포, 팁 와동의 강도 등 성능개선을 위한 주요한 설계변수를 식별하였다.

  • PDF

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.

Performance Analysis and Test of the Small Piezoelectric-Hydraulic Pump Brake System (소형 압전유압펌프 브레이크 시스템의 성능해석 및 실험)

  • Hwang, Yong-Ha;Hwang, Jai-Hyuk;Nguyen, Anh Phuc;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.49-56
    • /
    • 2018
  • In this paper, the performance analysis and the experiment of the brake system using the small piezoelectric-hydraulic pump were performed. Initially, the 3-D modeling of the brake load components was performed for the construction of the brake system. Subsequently, modeling using the commercial program AMESim was performed. A floating caliper model was used as a load for modeling the brake system. Through the AMESim simulation, load pressure, check valve displacement and flow rate under no load state were calculated, and performance analysis and changes in dynamic characteristics were confirmed by adding brake load. A jig for use in fixing the brake load during performance test was manufactured. The flow rate was assessed under no load condition and load pressure formation experiments were performed and compared with simulation results. Experimental results revealed the maximum load pressure as about 73bar at 130Hz and the maximum flow rate as about 203cc/min at 145Hz, which satisfied the requirement of small- and medium-sized UAV braking system. In addition, simulation results revealed that the load pressure and discharge flow rate were within 6% and 5%, respectively. Apparently, the modeling is expected to be effective for brake performance analysis.