• Title/Summary/Keyword: 시스템 동정

Search Result 303, Processing Time 0.029 seconds

도로 정보처리와 컴퓨터비죤에 관한 연구

  • Choe, Hyeong-Jin
    • The Magazine of the IEIE
    • /
    • v.15 no.1
    • /
    • pp.106-113
    • /
    • 1988
  • 현재 필자가 소속하고 있는 연구실에서는, 컴퓨터 아니메이숀, 컴퓨터 그래픽, 화상처리, 인공지능에 관한 연구등을 하고 있다. 본고에서는 화상처리에 관한 연구중에서, 본 연구실에서 최근에 발표한 컴퓨터 비죤에 관계있는 각종의 도로 정보처리에 관한 연구에 대해서 소개한다. 우선, 화상처리의 수법을 이용한 자동조종의 연구로서, 고속도로에서의 선행차의 자동동정에 관한 연구와 하프변환을 이용한 차량번호판 추출에 관한 연구에 대해서 소개한다. 다음에 도로망 지도처리에 관한 연구로서, 차재형 자동항법 시스템의 개요에 관한 소개와 최단시간 경로에 관한 연구, 도로지도의 자동판독에 관한 연구에 대해서 소개한다. 가까운 미래에, 점점 자동차의 자동화가 추진되고, 인공위성을 이용해서 자동차의 현재 위치를 정확하게 파악할 수 있게 되면, 본고에서 소개하는 연구들이 보다 중요한 의미를 가지게 되리라 생각한다.

  • PDF

Development of a Modified Real-valued Genetic Algorithm with an Improved Crossover (교배방법의 개선을 통한 변형 실수형 유전알고리즘 개발)

  • Lee, Deog-Kyoo;Lee, Sung-Hwan;Woo, Chun-Hee;Kim, Hag-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.12
    • /
    • pp.667-674
    • /
    • 2000
  • In this paper, a modified real-valued genetic algorithm is developed by using the meiosis for human's chromosome. Unlike common crossover methods adapted in the conventional genetic algorithms, our suggested modified real-valued genetic algorithm makes gametes by conducting the meiosis for individuals composed of chromosomes, and then generates a new individual through crossovers among those. Ultimately, when appling it for the gas data of Box-Jenkin, model and parameter identifications can be concurrently done to construct the optimal model of a neural network in terms of minimizing with the structure and the error.

  • PDF

A Study on Unified Vector Control of Induction Motor (유도전동기의 통일적 벡터제어에 관한 연구)

  • Kim, Y.D.;Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.5 no.3
    • /
    • pp.95-103
    • /
    • 2001
  • This study is applied to common induction motor, and vector control is realized by using an indirect type of induction motor which has a simple composition. In this study extended Kalman filter is used from control theoretical viewpoint, and primary resistance and secondary resistance which change according to the temperature of motor are simultaneously estimated. This paper aims to research an indirect vector control in which the secondary resistance obtained from this estimation is consistent with secondary flux. This estimation is made by on-line estimation, but on-line estimation is difficult because extended Kalman filter takes long time in computation time. So off-line estimation was made on the assumption that the variation of temperature in motor is slow temporally.

  • PDF

Developement of Measuring System of Circular Motion Accuracy in Machining Center (머시닝 센터에서 원운동정도 측정시스템의 개발)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.3
    • /
    • pp.58-66
    • /
    • 1995
  • It is very important to test motion accuracy and performance of NC machine tools as they affect that of all other machines machined by them in industry. In this paper, in has become possible to detect errors of linear displacement of radial direction for circular motion test using newly assembled magnetic type of linear scales so called Magnescale ball bar system, and to calculate time interval getting error motion data and revolution angle of circular motion in machining center using tick pulses come out from computer. And a set of error data gotten from test is expressed to a plot by computer treatment and to numerics of error motion by statistical treatment and results of test are compared with those of Renishaw ball bar system.

  • PDF

Organizartion of Measurin System of Circular Motion Accuracy of Machining Center (머시닝센터의 원운동정도 측정시스템의 구성)

  • 김영석;낭궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

Design of Radial Basis Function Neural Network(RBFNN) Structure Based on PSO (PSO 기반 RBF 뉴럴 네트워크 구조적 설계)

  • Seok, Jin-Wook;Kim, Young-Hoon;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1873_1874
    • /
    • 2009
  • 본 논문에서는 대표적인 시스템 모델링 도구중의 하나인 RBF 뉴럴 네트워크(Radial Basis Function Neural Network)를 설계한다. 제안된 RBF 뉴럴 네트워크는 은닉층의 활성함수로서 Fuzzy C-Means 클러스터링을 사용하며 더 나아가 모델의 최적화를 위해 PSO 알고리즘을 사용하여 은닉층의 노드 수와 다수의 입력을 가질 경우 입력의 종류를 동정한다. 제안한 모델의 성능을 평가하기 위해 NOx 데이터를 적용하였으며 제안된 모델의 근사화와 일반화 능력을 분석한다.

  • PDF

Identification of Nonlinear System using Extended GMDH algorithm (확장된 GMDH 알고리즘에 의한 비선형 시스템의 동정)

  • Kim, Dong-Won;Park, Byoung-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.827-829
    • /
    • 1999
  • The identification of nonlinear system using Extended GMDH(EGMDH) is studied in this paper. The proposed EGMDH algorithm is based on GMDH(Group Method of Data handling) method and its structure is similar to Neural Networks. The each node of EGMDH structure utilizes several types of high-order polynomial such as linear, quadratic and cubic, and is connected as various kinds of multi-variable inputs. As the operating condition changes, the parameters of EGMDH will also change, so the proposed scheme by means of the EGMDH method is capable of adapting rapidly to the changing environment. The simulation result shows that the simple nonlinear process can be modeled reasonably well by the proposed method which are simple but efficient.

  • PDF

Stable Wavelet Based Fuzzy Neural Network for the Identification of Nonlinear Systems (비선형 시스템의 동정을 위한 안정한 웨이블릿 기반 퍼지 뉴럴 네트워크)

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2681-2683
    • /
    • 2005
  • In this paper, we present the structure of fuzzy neural network(FNN) based on wavelet function, and apply this network structure to the identification of nonlinear systems. For adjusting the shape of membership function and the connection weights, the parameter learning method based on the gradient descent scheme is adopted. And an approach that uses adaptive learning rates is driven via a Lyapunov stability analysis to guarantee the fast convergence. Finally, to verify the efficiency of our network structure. we compare the Identification performance of proposed wavelet based fuzzy neural network(WFNN) with those of the FNN, the wavelet fuzzy model(WFM) and the wavelet neural network(WNN) through the computer simulation.

  • PDF

Optimization of Neuro-Fuzzy System using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템 최적화)

  • Kim, Sung-Suk;Jeon, Byung-Suk;Song, Chang-Kyu;Kim, Ju-Sik;Kim, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2073-2074
    • /
    • 2006
  • 본 논문에서는 PSO를 이용한 뉴로-퍼지 모델의 구조 및 파라미터 동정을 실시한다. 진화연산 기법의 무작위 탐색 능력과 오차 미분기반 학습에서의 수렴 특성을 가진 PSO를 이용하여 학습이 진행되는 동안 모델의 구조 및 파라미터를 주어진 학습 데이터에 적합하도록 최적화 시킨다. 또한 모델의 크기를 결정하는 규칙의 수 결정을 클러스터링 기법을 이용하여 소속함수의 수가 증가하더라도 규칙이 지수함수적으로 증가하는 문제를 해결하였다. 제안된 기법의 유용성을 시뮬레이션을 통해 보이고자 한다.

  • PDF

Optimization of Information Granule-based Fuzzy Neural Network (정보 입자 기반 퍼지 뉴럴 네트워크의 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2093-2094
    • /
    • 2006
  • 본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 정보 입자를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF