• Title/Summary/Keyword: 시스템역학

Search Result 1,454, Processing Time 0.032 seconds

An application of fourier spectral analysis to the analysis of linear dynamic systems coupled with nonlinear elements (비선형 요소가 결합된 선형역학시스템의 해석에의 Fourier 스펙트럼 해석기법의 응용)

  • 성단근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.61-64
    • /
    • 1986
  • The Fourier Spectral Analysis has been widely utilized in the analysis of linear dynamic systems. However, it may not be generaly extended to analyze nonlinear systems. In this paper, a linear underlying dynamic structure coupled with nonlinear elements is analyzed by using newly derived equations of motion after the linear dynamic structure is characterized by the Fourier spectral analysis.

  • PDF

인공 위성 구동기 모듈의 고장 검출

  • Jin, Jae-Hyeon
    • ICROS
    • /
    • v.17 no.4
    • /
    • pp.42-45
    • /
    • 2011
  • 위성 구동기 고장을 검출하는 문제를 살펴보기 위하여, 최근에 발표된 논문을 분석하였다. 구동기에 발생하는 고장은 그 영향이, 위성의 동역학을 거쳐서 센서의 출력으로 나타나기 때문에, 고장 검출은 기본적으로 상태추정이 수반되어야 한다. 다양한 상태추정기법이 적용될 수 있는데, 가장 많이 사용되는 기법은 Kalman 필터 및 유사 필터들이다. 위성의 고장에 적시에 대응한다면 피해를 최소화할 수 있기 때문에, 자율성 높은 탑재형(on-board)의 고장 진단 및 대응 시스템이 주요 연구목표가 된다.

Design of an Electromagnetic Valve Controller for a gasoline engine (가솔린엔진용 전자기 밸브 제어기 설계)

  • Hyun, Sang-Ho;Lee, Young-Hyun;Park, Chong-Kug
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2280-2282
    • /
    • 2001
  • EMV(electromagnetic valve) 시스템은 자동차에서 기계식 캠을 사용하지 않고 전자기력을 이용하여 흡·배기 밸브를 작동시키고 타이밍을 조절하기 위한 것이다. 본 논문에서는 EMV 시스템을 위한 전자기와 기계적 모델을 사용하여 그에 대한 동역학 모델을 유도하였다. EMV 시스템의 최대 동작주파수가 가솔린 엔진의 최대 회전수 6000rpm에 대응한 valve의 주파수가 50Hz 되기 위한 제어기를 설계하였고, 실험을 통하여 문제점들을 파악하고자 한다.

  • PDF

A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters (실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델)

  • Park, Su-Wan;Ryu, Kwan-Woo;Kim, Eun-Ju;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.255-262
    • /
    • 2007
  • Physically-based researches on simulating helicopter motions have been achieved in the field of aeronautics, aerodynamics and others. These results, however, have not been appled in the computer graphics area, mainly due to their complex equations and heavy computations. In this paper, we propose a dynamics model of helicopter rotor blades, which would be easy to implement, and suitable for real-time simulations of helicopters in the computer graphics area. Helicopters fly by the forces due to the collisions between air and rotor blades. These forces can be interpreted as the impulsive forces between the fluid and the rigid body. Based on these impulsive forces, we propose an approximated dynamics model of rotor blades, and it enables us to simulate the helicopter motions using existing rigid body simulation methods. We compute forces due to the movement of rotor blades according to the Newton's method, to achieve its real-time computations. Our prototype implementation shows real-time aerial navigation of helicopters, which are murk similar to the realistic motions.

Difference in Lower Extremity Landing Biomechanics between Male and Female Ballet Dancers During the Box Drop Landing (박스 드롭 착지 시 남자와 여자 발레 무용수들의 하지의 생체역학적 요인의 차이)

  • Choi, In-Ae;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.647-653
    • /
    • 2009
  • The purpose of this study was to investigate the differences between female and male ballet dancers in anterior cruciate ligament injury risk factors during the box drop landing task. Nine female and nine male collegiate ballet dancers participated in this study. Kinematic and ground reaction data were collected and combined with inverse dynamics to estimate the knee extensor and abductor moment. EMG data from the biceps femoris and rectus femoris were used to estimate the ratio of quadriceps-hamstrings muscle activity. No gender differences in anterior cruciate ligament injury risk factors were found during the box drop landing task. A significant relationship was found between female and male ballet dancers in the knee flexion angle.

Assessment of CFD Estimation Capability for the Local Loss Coefficients of Sudden Contraction and Expansion (급격 확대 및 축소관의 압력손실계수에 대한 전산유체역학 해석의 예측성능 평가)

  • Kim, Hyun-Jung;Park, Jong-Pil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.258-264
    • /
    • 2010
  • Most of fluid systems, such as P&ID in ships, power plants, and chemical plants, consist of various components. The components such as bends, tees, sudden-expansions, sudden-contractions, and orifices contribute to overall pressure loss of the system. The local pressure losses across such components are determined using a pressure loss coefficient, k-factor, in lumped parameter models. In many engineering problems Idelchik's k-factor models have been used to estimate them. The present work compares the k-factor based on CFD calculation against Idelchik's model in order to confirm whether a commercial CFD package can be used for pressure loss coefficient estimation of complex geometries. The results show that RSM is the best appropriate for evaluating pressure loss coefficient. Commercial CFD package can be used as a tool evaluating k-factor even though the accuracy is influenced by a turbulence model.

A Development and Estimation about Flexible Rod for Flexibility of Pedicle Screw System (인공 척추경 나사시스템의 유연성 증가를 위한 플렉시블 로드의 개발 및 평가)

  • Yoon, Gil-Sang;Sohn, Jong-In;Kim, Gun-Hee;Seo, Tae-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1775-1780
    • /
    • 2011
  • In this paper, it is analyzed about the mechanical characteristics of pedicle screw system which is a artificial implant for surgery to treatment serious lumbar vertebra diseases. The disk of lumbar vertebra to be fixed by pedicle screw system shows regressive phenomena. But if flexible rod, to give a flexibility(under 6 degree) to fixable disk is applied, it can protect against the degeneration of disk. This research is carried out a mechanical characteristic of pedicle screw system used flexible rod through finite elements analysis, and then flexible rod system was verified about safe movement through compression, tension and torsion test which is the pedicle screw system official recognition test(ASTM F 1717).

Numerical Simulation on the Formation and Pinching Plasma in X-pinch Wires on 2-D Geometry (자기유체역학 코드를 이용한 축 대칭 엑스 핀치 플라즈마 구조의 2차원 전산해석)

  • Byun, Sangmin;Na, Yong-Su;Chung, Kyoung-Jae;Kim, Deok-Kyu;Lee, Sangjun;Lee, Chanyoung;Ham, Seunggi;Ryu, Jonghyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper deals with the computational work to characterize the formation and pinching of a plasma in an X-pinch configuration. A resistive magnetohydrodynamic model of a single fluid and two temperature is adopted assuming a hollow conical structure in the (r,z) domain. The model includes the thermodynamic parameter of tungsten from the corrected Thomas-Fermi EOS(equation of state), determining the average ionization charge, pressure, and internal energy. The transport coefficients, resistivity and thermal conductivity, are obtained by the corrected Lee & More model and a simple radiation loss rate by recombination process is considered in the simulation. The simulation demonstrated the formation of a core-corona plasma and intense compression process near the central region which agrees with the experimental observation in the X-pinch device at Seoul National University. In addition, it confirmed the increase in radiation loss rate with the density and temperature of the core plasma.

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

The Stabilization Loop Design for a Drone-Mounted Camera Gimbal System Using Intelligent-PID Controller (Intelligent-PID 제어기를 사용한 드론용 짐발 시스템의 안정화기 설계)

  • Byun, Gi-sig;Cho, Hyung-rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.102-108
    • /
    • 2016
  • A flying drone generates vibrations in a great variety of frequencies, and it requires a gimbal system stabilization loop design in order to obtain clean and accurate image from the camera attached to the drone under this environment. The gimbal system for drone comprises the structure that supports the camera module and the stabilization loop which follows the precise angle while blocking the vibration from outside. This study developed a dynamic model for one axis for the stabilization loop design of a gimbal system for drones and applied classical PID controller and intelligent PID controller. The Stabilization loop design was developed by using MATLAB/Simulink and compared the performance of each controller through simulation. Especially, the intelligent PID controller can be designed almost without the dynamic model and it demonstrates that the angle can be followed without readjusting the parameters of the controller even when the characteristics of the model changes.