• Title/Summary/Keyword: 시설재배 토양

Search Result 390, Processing Time 0.033 seconds

Effects of Incorporation of Green Manure Crops on the Growth of Watermelonand Soil Nitrate Nitrogen Concentration (풋거름작물의 토양환원이 수박의 생육 및 토양의 질산염 농도에 미치는 영향)

  • Lim, Tae-Jun;Park, Jin-Myeon;Le, Seong-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2018
  • BACKGROUND: In this study, we evaluated the effects of soil incorporation of hairy vetch (HV) or ryeas a green manure on the growth and yields of watermelon and soil nitrate nitrogen in a green house.. METHODS AND RESULTS: HV and rye were cultivated for 151 days after sowing on October 30th and incorporated into soil before transplanting watermelon. The amount of N added by soil incorporation of HV and rye were 79 kg/ha and 88 kg/ha, respectively. Five different N treatments for each of HV and rye were included as follows: green manure, green manure with urea at 25%, 50%or 75%, and 100% ureafor the N recommendation rate. The growth and fruit yield of watermelon were not different among the treatments of both HV and rye. Soil nitrate N content at both HV and rye treatments decreased continuously with the lapse of days after planting (DAP) and was lowest at 75 DAP: 44 mg/kg and 52 mg/kg the for the HV and rye treatment without urea, respectively. CONCLUSION: These results indicate that the N mineralized from the soil incorporated HV or rye accounts for an important portion of N available for the growth and fruit yield of watermelon. It can be suggested that the green manures, comparable to ureacould ensure the yield of watermelon, if soil nitrate N content isabove 40 mg/kg by soil incorporation of HV and rye during watermelon cultivation. However, further studies on the relationship between soil nitrate N content during cultivation periods and the fruit yield of watermelon are required.

Study for Clean Energy Farming System by Mass and Energy Balance Analysis in the Controlled Cultivation of Vegetable Crop (Cucumber) (물질 및 에너지 수지 분석을 통한 시설채소(오이)의 청정에너지 농업 시스템 구축을 위한 기초 연구)

  • Shin, Kook-Sik;Kim, Seung-Hwan;Oh, Seong-Yong;Lee, Sang-En;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.280-286
    • /
    • 2012
  • Clean energy farming is the agricultural activity to improve an efficiency of agricultural energy use and to replace fossil fuels. This study was carried out to establish the clean energy farming system in the controlled cultivation of vegetable crop (cucumber) adopting the biogas production facility. In order to design the clean energy farming system, mass and energy balance was analyzed between the controlled cultivation system and the biogas production facility. Net yearly heating energy demands ($E_{YHED}$) of forcing and semi-forcing cultivation types were 48,697 and $13.536Mcal\;10^{-1}$ in the controlled cultivation of vegetable cucumber. To cover these $E_{YHED}$, the pig slurry of 511 and $142m^3\;10a^{-1}$ (biogas volume of 9,482 and $2,636Nm^3\;10a^{-1}$, respectively, as 60% methane content) were needed in forcing and semi-forcing cultivation types. The pig slurry of $511m^3\;10a^{-1}$ caused N 1,788, $P_2O_5$ $511kg\;10a^{-1}$ in the forcing cultivation type, and the pig slurry of $142m^3\;10a^{-1}$ caused N 497, $P_2O_5$ $142kg\;10a^{-1}$ in the semi-forcing cultivation type. The daily heating energy demand ($E_{i,DHED}$) by the time scale analysis showed the minimum $E_{i,DHED}$ of $7.7Mcal\;10a^{-1}\;day^{-1}$, the maximum $E_{i,DHED}$ of $515.1Mcal\;10a^{-1}\;day^{-1}$, and the mean $E_{i,DHED}$ of 310.2 in the forcing cultivation type. And the minimum $E_{i,DHED}$, the maximum $E_{i,DHED}$, and the mean $E_{i,DHED}$ were 5.3, 258.0, and $165.1Mcal\;10a^{-1}\;day^{-1}$ in the semi-forcing cultivation type, respectively. Input scale of biogas production facility designed from the mean $E_{i,DHED}$ were 3.3 and $1.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type. The maximum $E_{i,DHED}$ gave the input scale of 5.4 and $2.7m^3\;day^{-1}$ in the forcing and the semi-forcing cultivation type.

Determination of NPK Concentration in Fertigation Solution for Production of Greenhouse Oriental Melon (Cucumis melo L.) Using Response Surface Methodology (반응표면분석에 의한 참외 관비액 농도결정)

  • Seo, Young-Jin;Yeon, Il-Kweon;Shin, Yong-Seub;Suh, Dong-Whan;Choi, Seong-Yong;Park, So-Deuk;Jang, Won-Cheol;Suh, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.492-496
    • /
    • 2012
  • Fertigation with drip irrigation provides effective and cost-efficient way to supply both nutrient and water to crop. However, inappropriate management of fertigation systems may cause inefficient nutrient and water use, thereby diminishing expected yield benefits as well as contributing to deterioration of soil properties. In this study, greenhouse experiments were conducted to investigate the optimal concentration of N, P and K fertigation solution for maximum production of oriental melon (Cucumis melo L.) using a response surface methodology, to evaluate an efficiency of nutrients uptake and an effect on soil chemical properties. Canonical analysis of response surface and contour plot interpretation revealed that $108.3mg\;L^{-1}$ of nitrogen (N), $54.8mg\;L^{-1}$ of phosphorous (P) and $158.3mg\;L^{-1}$ of potassium (K) resulted in maximim yield of oriental melon ($2,966kg\;10a^{-1}$). Compared to conventional practice, fertigation increased fruit yield up to 23.0% (p<0.001), uptake of N and K by plant also up to 33.3% (p<0.001) and 15.7% (p<0.01), respectively. These results suggest that fertigation has the advantage of the increase in yield and fertilizer use efficiency.

The Study of Greenhouses Management System based on Android (안드로이드 기반의 비닐하우스 관리시스템 연구)

  • Ryu, Jin-Bo;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.741-742
    • /
    • 2016
  • IoT(Internet of Things) 기술이 급속도로 발전함에 따라 다양한 분야에 적용되고 있으며, 새로운 부가가치를 창출하고 있다. 최근에는 IoT 기술을 접목하여 도시 내부에 자동화된 농작물 재배시설을 설비하여 재배된 농작물을 직접 현지에 바로 공급할 수 있는 운영시스템을 구축하고 있다. 본 연구는 도심지 내부의 건물 옥상이나 농작물을 재배할 수 있는 임의의 공간에 온실을 설치하여 작물을 재배할 수 있는 환경을 원격으로 관리하는데 있다. 온실 내부의 환경 데이터를 계측하기 위한 온도, 습도, 조도, 토양상태, CO2 센스를 설치하여 온실 내부의 환경을 라즈베리파이2(raspberry Pi2)를 활용하여 계측하였다. 원격으로의 데이터 전송은 Wi-Fi를 이용하여 데이터를 전송하였으며, 중앙에서 관리된 관리정보를 통하여 온실 하우스의 내부 환경을 제어할 수 도록 모터(motor), 환풍기 팬, 조명용 Led, 워터 펌프 등을 제어하도록 하였다. 본 논문의 연구결과를 통하여 비닐하우스의 내부 상태를 계측하고, 다양한 구동장치를 제어할 수 있도록 IoT 기술을 편리하게 적용할 수 있는 라즈베리파이와 원격관리용 스마트 앱(app.)을 이용하여 비닐하우스 내부 관경을 편리하게 관리할 수 있음을 확인하였다.

  • PDF

Ecological Studies on Lettuce Drop Disease Occurring under Controlled Cultivation Conditions in Drained Paddy Fields (답리작 상치 시설재배지에서의 균핵병 발생생태에 관한 연구)

  • Shin Dong Bum;Lee Joon Tak
    • Korean Journal Plant Pathology
    • /
    • v.3 no.4
    • /
    • pp.252-260
    • /
    • 1987
  • Incidence of lettuce drop was observed throughout the growing season in the vinylhouse at the southern part of Korea, Kimhai. Occurrence of this disease was especially severe at the seedling stage. Number of sclerotia in surface soil $(30\times30\times5cm)$ was 22.0 at the seedling stage, and 5.3 at harvest in the infected area. Temperature for mycelial growth ranged from 5 to $30^{\circ}C$ with optimum temperature at $25^{\circ}C$. Sclerotia were formed fewer at low temperature, but their size was larger resulting in heavier dry weight than that at high temperature. The apothecia were formed from the sclerotia that were buried in March, April and September upto 3cm soil depth, but formed from those buried only 1 em soil depth in October. Sclerotia buried in June and December did not form apothecia regardless of soil depth by 90 days. The sclerotia buried in the 5cm of soil depth did not form apothecia. Sclerotia that were embedded in wet or flooded soil at $25^{\circ}C$ and $30^{\circ}C$ for 5 weeks lost their viability. Infection of lettuce was possible with mycelia originated from sclerotia on autoclaved lettuce plant fragments. The fungus was pathogenic on 25 plant species in 8 families in artificial inoculation tests. Lettuce seedlings appeared to be infected by airborne ascospore originated from sclerotia on crops and weeds around paddy fields, because sclerotia existing in soil might perish under long flood conditions during rice cultivation.

  • PDF

Chemical Properties of the Greenhouse Soil and Nutrient Contents in Leaves and Stems of Carnation, Lily, and Rose. (카네이션, 백합, 장미 시설재배지 토양중 양분함량 과 품종별 경엽중 양분함량)

  • Hwang, Ki-Sung;Ho, Qyo-Soon
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.247-251
    • /
    • 2000
  • This study was conducted to investigate tissue nutrient contents and salt accumulation in plastic house soils cultivating lily, rose and carnation. The soil tested had high total salts, available phosphate and exchangeable potassium. The soil cultivating rose had highest salt concentvation followed by chose of carnation and lily. Tissue nutrient contents of lily were higher than chose of carnation and rose. In comparison among cultivars, the nutrient contents were as follows; 'Snow Qeen'>'Le Reve'>'Casa Blanca' in lily; 'Marina'>'Super star'>'Mary Devor'>'Madelon' in carnation; and 'Cocktail'> 'Marina'>'Maderon' in rose. The range of the nutrient contents were: T-N: $1.66\;{\sim}2.35%$, K: $1.73{\sim}2.23%$, Zn: $2.13{\sim}6.43\;mg/kg$, Cu: $3.79{\sim}13.89\;mg/kg$ in carnation; T-N: $0.79{\sim}1.65%$, P: $0.18{\sim}0.44%$, Ca: $0.59{\sim}1.26%$, Mg: $0.21{\sim}0.46%$, Zn: $23.65{\sim}90.30\;mg/kg$, Cu: $0.99{\sim}4.62\;mg/kg$ in lily; and T-N: $0.75{\sim}1.62%$, P: $0.17{\sim}0.30%$, K: $1.60{\sim}2.91%$, Ca: $0.64{\sim}0.94%$, Zn: $24.57{\sim}48.31\;mg/kg$, Cu: $3.10{\sim}9.08\;mg/kg$ in rose. The amount of nutrients uptake per plant was high in order of: K > T-N > Ca > Mg in lily; and T-N > K > Ca > P > Mg in rose.

  • PDF

Relationships between Micronutrient Contents in Soils and Crops of Plastic Film House (시설재배 토양과 작물 잎 중의 미량원소 함량 관계)

  • Chung, Jong-Bae;Kim, Bok-Jin;Ryu, Kwan-Sig;Lee, Seung-Ho;Shin, Hyun-Jin;Hwang, Tae-Kyung;Choi, Hee-Youl;Lee, Yong-Woo;Lee, Yoon-Jeong;Kim, Jong-Jib
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.217-227
    • /
    • 2006
  • Micronutrient status in soils and crops of plastic film house and their relationship were investigated. Total 203 plastic film houses were selected (red pepper, 66; cucumber, 63; tomato, 74) in Yeongnam region and soil and leaf samples were collected. Hot-water extractable B and 0.1 N HCl extractable Cu, Zn, Fe, and Mn in soil samples and total micronutrients in leaf samples were analyzed. Contents Zn, Fe, and Mn in most of the investigated soils were higher than the upper limits of optimum level for general crop cultivation. Contents of Cu in most soils of cucumber and tomato cultivation were higher than the upper limit of optimum level, but Cu contents in about 30% of red pepper cultivation soils were below the sufficient level. Contents of B in most soils of cucumber and tomato were above the sufficient level but in 48% of red pepper cultivation soils B were found to be deficient. Micronutrient contents in leaf of investigated crops were much variable. Contents of B, Fe, and Mn were mostly within the sufficient levels, while in 71% of red pepper samples Cu was under deficient level and in 44% of cucumber samples Cu contents were higher than the upper limit of sufficient level. Contents of Zn in red pepper and cucumber samples were mostly within the sufficient level but in 62% of tomato samples Zn contents were under deficient condition. However, any visible deficiency or toxicity symptoms of micronutrients were not found in the crops. No consistent relationships were found between micronutrient contents in soil and leaf, and this indicates that growth and absorption activity of root and interactions among the nutrients in soil might be important factors in overall micronutrient uptake of crops. For best management of micronutrients in plastic film house, much attention should be focused on the management of soil and plant characteristics which control the micronutrient uptake of crops.

The Effect of Anaerobic Fermentation Treatment of Wheat bran on the Root-Knot Nematodes and the Quality of Melons in Plastic Film House Soil (밀기울 토양 혐기발효 처리가 멜론의 뿌리혹선충 방제 및 품질에 미치는 영향)

  • Park, Dong-Kum;Kim, Hong-Lim;Park, Kyoung-Sub;Huh, Yun-Chan;Lee, Woo-Moon;Lee, Hee-Ju
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • This study was conducted to investigate the effect of anaerobic fermentation of wheat bran to prevent root-knot nematodes which are infected in plastic house due to over 10 years continuous cultivation of fruits and vegetables. Anaerobic fermentation treatment of wheat bran was done for 20 days by mixture of 2,000 kg fresh wheat bran per 10 are and soil with water in 30 cm soil depth. Chemical treatment of fosthiazate was done by mixture of 6 kg soil for 7 days. Both treatments show suppression of density of rootknot nematodes, especially in anaerobic fermentation treatment. Anaerobic fermentation treatment keeps the low level of root-knot nematode density until 90 days of cultivation and also showed good effect of melon growth. Related with death percentage of melon plant, anaerobic fermentation treatment shows only 3% and also large size of quality fruit but control 65%. Anaerobic fermentation treatment of wheat bran have proved to control the level of root-knot nematodes instead of synthetic chemicals for at least one cropping season and it showed good effect to fruit quality.

Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils (시설재배지 유공관 암거배수에 의한 염류집적 경감효과)

  • Kim, Dae-Su;Yang, Jae E.;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

Soil Management Measures for Continuous Melon Cultivation in Plastic Film House (참외 연작장해(連作障害) 대책(對策)을 위(爲)한 효과적(效果的)인 토양관리(土壤管理))

  • Chun, Han-Sik;Kang, Sang Jae;Park, Woo Churl
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • This experiment was aimed to find out the measures or soil managements in continuous melon cultivation and to produce the high quality of yellow melon in plastic film house culture. The experiment was designed with surveying of farmer's field and conducted for 4 years. The most effective measure of soil managements was to cultivate paddy rice in June after harvesting the melon and next ways were treated with submergence or the plastic film for 40days during the period of high temperature of summer and plowed over 50cm depth with plough machine. To decrease the soil problems in continous cultivation, the addition of red earth soil of 500M/T per 10a with increasing the application rates of rice straw and fertilizer (N, P, K) in 30% and 10% respectively was effective in plastic film house culture. The effect of soil amendment application was continued for two years at least and it increased the commercial quality and sugar content in brix of yellow melon in 10% and 2.6 degree respectively.

  • PDF