• Title/Summary/Keyword: 시멘트 콘크리트

Search Result 2,426, Processing Time 0.031 seconds

Foundation Properties of Cement Mortar in the Use of Fine Aggregate of Coal Gasification Slag (석탄가스화 용융슬래그를 잔골재로 활용하는 시멘트 모르타르의 기초적 특성)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • This study evaluated the properties of Coal gasification slag(CGS) according to the CGS contents of cement mortar condition as a basic step to examine the applicability of CGS as concrete fine aggregate. Flow increased with increasing CGS contents for both Crushed sand a(CSa) and Crushed sand b+Sea sand(CSb+SS), but the amount of air contents decreased to the opposite tendency. Based on 28 days is maximum compressive strength was obtained at CGS 50% when CSa was used and CGS 75% when CSb+SS. The flexural strength were the maximum at 25% and 50% of CGS, but the tendency was similar to the compressive strength. Compared with CSa, the compressive strength and flexural strength 5% higher than those of CSb+SS, in CGS using of were about 5% higher than those of unused CGS. As a result of comprehensive study on the quality of mortar according to the CGS contents, it can be concluded that when CGS is mixed with fine aggregate at about 50%, it can contribute to securing workability and strength development positively so that resource recycling and quality improvement can be achieved at the same time.

Contribution of Two-Stage Mixing Approach on Compressive Strength of Mortar Made of Recycled Fine Aggregate (2단계 배합방법이 순환잔골재 혼입 모르타르의 압축강도에 미치는 영향)

  • Kim, Yu-Jin;Kim, Gyu-Won;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.490-497
    • /
    • 2020
  • This work has been initiated to find possibility whether recycled fine aggregate can be used as a source of aggregate for structural concrete or not. Two-stage mixing approach was chosen in order to maximize strength potential from recycled fine aggregate. Moisture content of the recycled fine aggregate was changed, and two different types of two-stage mixing approaches were applied to produce cement mortar. The strength of mortar made of 100% recycled fine aggregate by two-stage mixing approaches was compared to that of mortar made of 100% washed sea sand. According to the results, the effect of moisture content on compressive strength was observed from low water cement mortar(W/C 0.3). In case of W/C 0.5 cement mortar, no clear relationship was observed between moisture content and strength development. It was found that two-stage mixing approach has a potential to increase the strength of mortar made of 100% recycled fine aggregate. In case of modified version of two-stage mixing approach which first prepares cement paste and pours recycled fine aggregate into the cement paste, was more effective to increase the strength of mortar made of 100% recycled fine aggregate.

Characteristics of Compressive Strength Development of High Strength Cement Composites Depending on Its Mix Design (고강도 시멘트 복합체의 배합조건에 따른 압축강도 발현 특성)

  • Jeong, Yeon-Ung;Oh, Sung-Woo;Cho, Young-Keun;Jung, Sang-Hwa;Kim, Joo-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.585-593
    • /
    • 2021
  • This study investigates the compressive strength of high-strength cement composites with 64 mixture designs and 2 curing conditions. The cement composites were designed with varying water-to-binder ratios, silica fume content to cement, and binder content per unit volume of cement composite to explore compressive strength development depending on its mix design. An increase in the water-to-binder ratio decreased the compressive strength of the composites, having consistency with the trend in normal concrete. The compressive strength increased with ages at an ambient curing temperature, but it was not identified at high-temperature curing. The compressive strength development was negligible in case that silica fume content to OPC is 15%~25%, but a decrease in the con ten t below 15% reduced compressive stren gth. It was more obvious in the specimen of low water-to-binder ratio. The specimen with 840kg/m3 of binder content per unit volume had the highest compressive strength in this study, and the decrease in binder content reduced the compressive strength of high strength cement composites in low silica fume content.

Investigation on Fire Resistance of High-Performance Cement Motar with Recycled Fine Aggregate Mixed by Two-Stage Mixing Approach (2단계 배합을 사용한 순환잔골재 혼입 고성능 시멘트 모르타르의 내화성능 연구)

  • Park, Sung-Hwan;Choi, Jun-Ho;Lee, Chi Young;Koo, Min-Sung;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • This study was conducted to confirm the applicability of recycled aggregates as aggregates for structural concrete as a way to respond to the shortage of natural aggregates. The two-stage mixing approach developed by Tam et al. is known to be a method that can improve the mechanical performance of recycled aggregate concrete without the installation of new additional facilities. In this work, modified version of two stage mixing approach, which was used in our earlier work, was introduced to prepare mortar specimens with recycled fine aggregate, and the compressive strength and fire resistance were compared to mortar mixed with normal mixing approach. According to the experimental results from mortar with recycled fine aggregate, the use of two-stage mixing approach was found to be more effective than normal mixing approach for compressive strength development. In addition, the residual strengths of the mortar with two-stage mixing approach was higher than mortar made of normal mixing approach after exposure to 600 and 900 ℃. It is possible to manufacture high-performance cement composites with recycled fine aggregates through the active use of the two-stage mixing approach.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

Characteristics of Polyester Polymer Concretes Using Spherical Aggregates from Industrial By-Products (III) (Using an Atomizing Steel Slag as a Filler and Fine Aggregate) (산업부산물 구형골재를 사용한 폴리에스테르 폴리머 콘크리트의 특성(III) (아토마이징 제강슬래그를 충전재와 잔골재로 사용))

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • It is known that polymer concretes are 8~10 times more expensive than ordinary Portland cement concretes; therefore, in the production of polymer concrete products, it is very important to reduce the amount of polymer binders used because this occupies the most of the production cost of polymer concretes. In order to develop a technology for the reduction of polymer binders, smooth and spherical aggregates were prepared by the atomizing technology using the oxidation process steel slag (electric arc furnace slag, EAFS) and the reduction process steel slag (ladle furnace slag, LFS) generated by steel industries. A reduction in the amount of polymer binders used was expected because of an improvement in the workability of polymer concretes as a result of the ball-bearing effect and maximum filling effect in case the polymer concrete was prepared using the smooth and spherical atomized steel slag instead of the calcium carbonate (filler) and river sand (fine aggregate) that were generally used in polymer concretes. To investigate physical properties of the polymer concrete, specimens of the polymer concrete were prepared with various proportions of polymer binder and replacement ratios of the atomized reduction process steel slag. The results showed that the compressive strengths of the specimens increased gradually along with the higher replacement ratios of the atomized steel slag, but the flexural strength showed a different maximum strength depending on the addition ratio of polymer binders. In the hot water resistance test, the compressive strength, flexural strength, bulk density, and average pore diameter decreased; but the total pore volume and porosity increased. It was found that the polymer concrete developed in this study was able to have a 19% reduction in the amount of polymer binders compared with that of the conventional product because of the remarkable improvement in the workability of polymer concretes using the spherical atomized oxidation steel slag and atomized reduction steel slag instead of the calcium carbonate and river sand.

An Experimental Study on the Carbonation Properties of Concrete According to Accelerating Carbonation Conditions (촉진중성화 조건에 따른 콘크리트의 중성화 특성에 관한 실험적 연구)

  • 문형재;이의배;송민섭;주지현;조봉석;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.41-44
    • /
    • 2004
  • Recently, in the case of domestic, for all that the deterioration environment about the carbonation of reinforced concrete structures is accelerated, systematic diagnosis and researches are not completed. And the selection techniques of repair material and method used under the situation that the indicator and the performance evaluation method are nor established are dependant on existing experience. Therefore, the purpose of this study is intend to present fundamental data for the reasonable selection of repair material and method. durability design and longevity on the deteriorated reinforced concrete structures, through computing the carbonation depth and velocity coefficient by accelerating carbonation test under various accelerating conditions and investigating the application of carbonation evaluation method. The results of this study are as follow; The resistances to carbonation are increased when the W/C ratio if lower and the treatment of surface coating is executed. And the carbonation depth and velocity coefficient according to accelerating carbonation test conditions are increased when the conditions of temperature, relative humidity and $CO_2$density are higher individually.

  • PDF

Chemical Effects to Cement Concrete by Grease Oxidation (그리이스의 산화가 시멘트 콘크리트에 미치는 화학적 영향)

  • 정근우;조원오;김영운;임수진;이은아;김성욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.99-105
    • /
    • 2000
  • Greases composed of base oil and thickener are widely used in the purpose of lubrication and anti-corrosion of machinery. However, greases are sometimes oxidized and decomposed by heat of friction, and produced organic acid. And the greases leaked out ordinary spot make the concrete structures weaken. In this study, the chemical effects of the greases with the concrete structures were investigated through oxidation reaction under pressure and oxygen, and evaluated by the analysis of TAN, Ca content, FT-IR and XRD of grease and cement powder after the oxidation reaction. As the results, TAN value decreased with the increase of the content of cement because of neutralization of organic acid produced by the oxidation of grease with calcium contained in the cement. The content of calcium linearly increased with the increase of cement due to calcium salt by neutralization of acid. Also, according to XRD results of the cement powder oxidized at 99 $^{\circ}C$, the diffraction peak due to calcium hydroxide decreased in comparison with that at room temperature because of the reaction of calcium and organic acid.

  • PDF

An Experimental Study on the Early-Age Behavior and Temperature Pattern of CRCP (CRCP의 초기거동 및 온도패턴에 관한 시험적 연구)

  • Cho, Dae Ho;Suh, Young Chan;Kim, Yeon Bok;Nam, Young Kug
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.299-305
    • /
    • 1994
  • An experimental test section was placed in Pangyo-Guri Expressway to monitor the performance of CRCP(Continuously Reinforced Concrete Pavement). So far early-age behaviors of the test section have been monitored for about two years. The purposes of this paper are to analyze the early-age behavior and temperature pattern of the test section and to compare the results with those of similar test sections placed in Houston. As results of this study, following findings were obtained. The results of Pangyo-Guri test section were generally better than those of Houston test sections in terms of the early-age crack patterns. Type II cement was more effective than type I cement in controlling the early-age cracking. Afternoon placement was more effective than morning construction in controlling the early-age cracking in summer season.

  • PDF

Fundamental Study on Optimum Mixing Proportion of Cement Concrete Pavement using Recycled Aggregate (순환골재를 활용한 포장용 시멘트콘크리트의 최적배합 도출을 위한 기초 연구)

  • Kim, Sueng Won;Kim, Yong Jae;Lee, Jang Yong;Lee, Hak Yong;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.105-113
    • /
    • 2016
  • OBJECTIVES : This study is to develop the optimum mixing proportions for cement concrete pavement with using recycled aggregates. METHODS : The mixture varied recycled coarse aggregates content from 50 % to 100 % to replace the natural coarse aggregates by weight. Tests for fundamental properties as a cement concrete pavement were conducted before and after hardening of the concrete. RESULTS : It was found that the variation in the amount of the recycled aggregate affected the compressive and flexural strength development, as well as the chloride ion penetration resistance. As the amount of the recycled aggregate content increased the compressive and flexural strength and the resistance to chloride ion penetration decreased. However, the resistance to freeze-thaw reaction was affected significantly. In addition, the gradation of the aggregate became worse and hence so did the coarseness factor as the recycled aggregate amount increased. CONCLUSIONS : The fundamental properties of the concrete with recycled aggregate does not seem to be appropriate when the recycled aggregate quality is not guaranteed up to a some level and its replacement ratio is over 50%. The optimized gradation of the aggregates should also be sought when the recycled aggregate is used for the cement concrete pavement materials.