• Title/Summary/Keyword: 시멘트 콘크리트

Search Result 2,438, Processing Time 0.029 seconds

Evaluation For Adhesion in Tension of SBR Polymer Modified Concrete Tensile by Uniaxial Method (직접인장방법에 의한 SBR 폴리머 개질 콘크리트의 부착강도 특성 평가)

  • Yun, Kyong-Ku;Jang, Heung-Gyun;Lee, Nam-Ju;Lee, Seung-Jae;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.117-126
    • /
    • 2001
  • In this research, evaluation of adhesion in tension property of SBR-modified concrete to ordinary portland cement concrete was conducted with uniaxial direct tensile bond test which was proposed by Kuhlmann. A test set-up was fabricated in order to minimize the eccentric force by introducing a joint which might fully rotate. The main experimental variables were cement-latex ratios, surface preparations and moisture levels. The results obtained were as follows: The LMC specimen at 15% latex-cement ratio increased the adhesion in tension by range of 37% compared to that of conventional cement concrete. This might be due to latex film formed between cement paste and aggregate. The effects of surface preparation on bond of latex modified concrete to conventional concrete were significant at the conditions by sand paper and wire brush. A better bond could be achieved by rough surface rather than smooth. The saturated and surface dry (SSD) condition were considered to be the most appropriate moisture level followed by wet, finally by dry. Thus, a proper surface preparation and moisture level are quite necessity in order to obtain better bonding at LMC overlay.

  • PDF

The Fundamental Study on Properties of Concrete Using the Garnet with Industrial Wastes (산업부산물인 가네트를 이용한 콘크리트의 성질개선에 관한 기초적 연구)

  • Lim, Byoung-Ho;Park, Jung-Min;Kim, Tae-Gon;Kim, Wha-Jung
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.183-190
    • /
    • 1999
  • This paper investigated the possibility of appling to concrete through fundamental experiment for garnet, which was industrial wastes generated in kyung pook region, in aspects of development of new materials and recycling of industrial wastes due to shortage of natural resources. Consequently, garnet powder showed the possibility of admixture as showed in the chemical composition because the content of silica and alumina in relation to pozzolanic activity was about 50%. The time of setting was more or less diminished as the increasing of replacement ratio of garnet. In flow test, flow values tended to increase to some degree as the increasing of replacement ratio of garnet. Therefore, application of garnet was expected to improve the workability of concrete. The compressive strength of mortar replaced by garnet was respectively increased as compared with plain mortar and the maximum strength was showed in replaced by 10%, however a little different to the change of W/B ratio. Also, the possibility of admixture to reduce the amount of cement and to improve the property of concrete was showed as the strength of mortar replaced by garnet was comparable to that by existing admixture(silica fume, fly-ash).

Evaluation of Half Cell Potential Measurement in Cracked Concrete Exposed to Salt Spraying Test (염해에 노출된 균열부 콘크리트의 반전위 평가)

  • Kim, Ki-Bum;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.621-630
    • /
    • 2013
  • Several techniques for steel corrosion detection are proposed and HCP (half cell potential) technique is widely adopted for field investigation. If concrete has cracks on surface, steel corrosion is rapidly accelerated due to additional intrusion of chloride and carbon dioxide ions. This study is for an evaluation of HCP in cracked concrete exposed chloride attack. For this work, RC (reinforced concrete) beams are prepared considering 3 w/c ratios (0.35, 0.55, and 0.70) and several cover depths (10~60 mm) and various crack widths of 0.0~1.0 mm are induced. For 35 days, SST (salt spraying test) is performed for corrosion acceleration, and HCP and corrosion length of rebar are evaluated. With increasing crack width, w/c ratios, and decreasing cover depth, HCP measurements increase. HCP evaluation technique is proposed considering the effects of w/c ratios, crack width, and cover depth. Furthermore anti-corrosive cover depths are obtained through Life365 program and the results are compared with those from this study. The results shows relatively big difference in cracked concrete, however provide similar anti-corrosive conditions in sound concrete.

Properties of Concrete Panel Made by Light Weight Aggregates (인공경량골재로 제조된 콘크리트 패널의 물성)

  • 엄태호;김유택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.221-228
    • /
    • 2004
  • Basic properties of artificial lightweight aggregate by using waste dusts and strength properties of LWA concrete were studied. Bulk specific gravity and water absorption of artificial lightweight aggregates varied from 1.4 to 1.7 and 13 to 16%, respectively. Crushing ratio of artificial lightweight aggregate was above 10% higher than that of crushed stone or gravel. As a result of TCLP leaching test, the leaching amount of tested heavy metal element was below the leaching standard of hazardous material. Slump, compressive strength and stress-strain properties of LWA concrete made of artificial lightweight aggregate were tested. Concrete samples derived from LWA substitution ratio of 30 vol% and W/C ratio of 45 wt% showed the best properties overall. Thermal insulation and sound insulation characteristics of light weight concrete panel with the optimum concrete proportion were tested. Average overall heat transmission of 3.293W/㎡$^{\circ}C$ was observed. It was higher by about 15% than those of normal concrete made by crushed stone. Sound transmission loss of 50.9 ㏈ in frequency of 500 ㎐ was observed. It was higher by about 13% than standard transmission loss.

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

A Case Study on CO2 Uptake of Concrete owing to Carbonation (콘크리트 탄산화에 의한 CO2 포집량 평가의 사례연구)

  • Yang, Keun-Hyeok;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 2013
  • The present study assessed the amount of $CO_2$ uptake owing to concrete carbonation through a case study for an apartment building with a principal wall system and an office building with Rahmen system under different exposed environments during use phase and recycling application. The $CO_2$ uptake assessment owing to concrete carbonation followed the procedure established by Yang et al. As input data necessary for the case study, actual surveys conducted in 2012 in Korea, which included data about the climate environments, $CO_2$ concentration, lifecycle inventory database, life expectancy of structures, and recycling activity scenario, were used. From the comparisons with the $CO_2$ emissions from concrete production, the $CO_2$ uptake during the lifetime of structures was estimated to be 5.5~5.7% and that during recycling activity after demolition was 10~12%; as a result, the amount of $CO_2$ uptake owing to concrete carbonation can be estimated to be 15.5~17% of the $CO_2$ emissions from concrete production, which roughly corresponds to 18-21% of the $CO_2$emissions from cement production as well.

A Study on the Thermal Crack Control of the In-Ground LNG Storage Tank as Super Massive Structures (지하식 LNG 저장탱크 구조물의 온도균열 제어에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.773-780
    • /
    • 2011
  • In this study, thermal stress analysis are carried out considering material properties, curing condition, ambient temperature, and casting date of the mass concrete placed in bottom slab and side wall of the in-ground type LNG tank as a super massive structure. Also, based on the numerical results, cracking possibility is predicted and counter measures to prevent the cracking are proposed. For the tasks, two optimum mix proportions were selected. From the results of the thermal stress analysis, the through crack index of 1.2 was satisfied for separately caste concrete lots except for the bottom slab caste in 2 separate sequences. For the double caste bottom slab, it is necessary introduce counter measures such as pre-cooling prior to the site construction. Also, another crack preventive measure is to lower the initial casting temperature by $25^{\circ}C$ or less to satisfy 1.2 through crack index criterion. In the $1^{st}$ and $2^{nd}$ caste bottom slab, the surface crack index was over 1.2. Therefore, the surface cracks can be controlled by implementing the curing conditions proposed in this study. Since the side wall's surface crack index was over 1.0, it is safe to assume that the counter preventive measures can control width and number of cracks.

Strength Development and Durability of High-Strength High-Volume GGBFS Concrete (고강도 고함량 고로슬래그 콘크리트의 강도 발현 특성 및 내구성)

  • Kim, Joo-Hyung;Jeong, Ji-Yong;Jang, Seung-Yup;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.261-267
    • /
    • 2015
  • To develop high-strength high-volume ground granulated blast-furnace slag (GGBFS) concrete, this study investigated the characteristics of strength development and durability of concrete with the water-to-binder ratio of 23% and the GGBFS replacement ratio of up to 65%. The results show that the compressive strength of GGBFS blended concrete is lower than that of ordinary Portland cement (OPC) concrete up to 3-day age, but the becomes higher after 7-day age. Together with strength increase, the pore structure becomes tighter, and thus the resistance to chloride ion penetration increases. Therefore, the GGBFS blended concrete has high resistance to freezing and thawing without additional air-entraining, and high resistance to carbonation despite low amount of calcium hydroxide ($Ca(OH)_2$). On the other hand, if silica fume (SF) is blended with GGBFS, the strength becomes lower than that of the concrete blended with GGBFS only, and the resistance to chloride ion penetration deceases. Therefore, it needs further studies on the reaction of SF in high-strength high-volume GGBFS concrete.

The Durability of the Concrete Using Bottom Ash as Fine Aggregate (바텀애시를 잔골재로 사용한 콘크리트의 내구성능에 관한 연구)

  • Park, Seung-Ho;Lee, Jeong-Bae;Kim, Seong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.349-355
    • /
    • 2016
  • This study is about the reuse of bottom ash, which is released as a necessity in thermal power plant. In general, coal-ash are classified as fly-ash, bottom-ash, cinder-ash. Of these, a large amount of fly ash is being recycled as cement substitutes. While, recycling rates of bottom ash are the lowest due to its porosity and high absorption. In this study, the durability of the concrete using bottom ash as a concrete fine aggregate was evaluated. The using level of the bottom ash ranges to step-by-step from 0% to 30%. According to the result of the durability test, regardless of the presence of the bottom ash, freeze-thaw durability could be secured by air entrainment. In case of the resistance to chloride ions penetration, the length change, and the effects on heavy metals, the replacement of bottom ash as fine aggregate was not critical. Although carbonation penetration was higher as the replacement level of bottom ash increased, the experiment showed that it could be possible to use bottom ash as concrete fine aggregate with proper mix design.

Mechanical Properties of Recycled Powder mixing Concrete (재생미분말을 혼입한 콘크리트의 역학적 특성)

  • Lee, Seung-Hwan;Jung, Dae-Jin;Choi, Ik-Chang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.769-772
    • /
    • 2008
  • The problem of disposing construction waste materials has become a national and social problem. Recycled powder generated in the process of making aggregate, and the recycled powder is land-filled in its entirety. Results of toxicity testing of recycled power show that it contains base-pair substituent mutagenicity. As recycled powder is disposed of as landfill, it can cause secondary contamination such as soil and underground water contamination. There has been very little research made on recycled powder. This study has examined the utilization of concrete mixture by using recycled powder in a mixture instead of cement and compared and analyzed the characteristics of dynamics and workability. This study has examined the application of recycled powder in concrete. Depending on the replacement rate and workability, test piece was manufactured using different mixing rate by CP, WCP, PCP. The CP was used to examine the physical property of concrete and characteristics its dynamics. The letters W of WCP and P of PCP are the initials of water and mixture. They were made using the standard mixing ratiosemphasizing the workability to determine the characteristic of dynamics of concrete based on the mixing ratio of recycled powder. With the increase in the replacement rate, CP had very little change in the strength. But with the decline of slump, the workability was not good. The result of manufacturing WCP and PCP using the standard mixing ratio showed that WCP had a drop in strength compared to the plain. PCP had almost the same value as the plain only when the replacement rate was 10%. When it was higher than that, a reduction in strength was observed.

  • PDF