• Title/Summary/Keyword: 시멘트페이스트 시스템

Search Result 16, Processing Time 0.021 seconds

Characterization of Rheology on the Multi-Ingredients Paste Systems Mixed with Mineral Admixtures (광물혼화재가 혼합된 다성분 페이스트 시스템의 레올로지 특성 평가)

  • Park Tae-Hyo;Noh Myung-Hyun;Park Choon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.241-248
    • /
    • 2004
  • The rheological properties of cement paste system mixed with mineral admixtures (MAs) used to increase the strength and improve durability and fluidity of concrete were investigated. And cement paste systems were designed as one-, two- and three-ingredients blended paste systems. The rheological properties of paste systems were assessed by Rotovisco RT 20 rheometer (Hakke inc.) having a cylindrical serrated spindle. The rheological properties of one-ingredient paste systems were improved with increasing the dosage of superplasticizer. For two-ingredients paste systems, as increasing the replacement ratio of blast furnace slag (BFS) and fly ash (FA), the yield stress and plastic viscosity were decreased compared with non-replacement. In the ordinary portland cement (OPC)-silica fume (SF) paste systems, in accordance with an increase in the replacement ratio of SF, the yield stress and plastic viscosity were increased steeply. For three-ingredients paste systems, both OPC-BFS-SF and OPC-FA-SF paste systems, the rheological properties were improved compared with the only replacement of SF. In the case of both two-and three-ingredients paste systems, the rheological properties using BFS were improved more than FA.

Setting Time Evaluation on Cement Paste with Retarder Using Non-Destructive Measurements (비파괴 측정법을 이용한 지연제 첨가 시멘트 페이스트의 응결 평가)

  • Ahn, Yu-Rhee;Jun, Yu-Bin;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2022
  • Controlling the setting time of cementitious materials is one of the most important factors in securing early-age performance of concrete structures. Recently, the use of retarding admixtures, which enable the inhibition of some hydration products to control the securing time due to average temperature rise is suggested. Although various non-destructive evaluation methods have been proposed to evaluate cement hydration and hardening of cement-based materials to overcome the limitations of Vicat needle test, experimental research is still required to use the non-destructive evaluation method with added retarding admixtures. In this study, measurements of electrical resistivity and ultrasonic wave velocity in early-aged cement pastes were performed according to the addition of retarding admixture(tartaric acid). The setting time of the cement pastes was evaluated by obtained rising time of the both non-destructive measurements. As a result, the possibility of evaluating the setting delay in cement pastes was confirmed through comparative analysis with the initial and final setting times by Vicat test. In addition, X-ray diffraction results at the rising time of electrical resistivity showed a key hydration product affecting the setting delay.

Experimental study on types of polycarboxylate superplasticizers and their on the rheological properties of the cement paste (폴리카본산계 고성능 감수제의 종류와 시멘트 페이스트의 레올로지 특성에 미치는 영향에 관한 실험적 연구)

  • Ko, Hye-Bin;Kong, Tae-Woong;Cho, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.81-82
    • /
    • 2020
  • Cement paste is the basic material constituting concrete and the most basic data of workability. This study quantitatively evaluated the measured data using a ring flow and a rotary viscometer to estimate the flow of cement paste, and also evaluated the flow and rheology over time. For this, the current work has studied admixtures that affect the fluidity of cement paste. As a result of the experiment, since fluidity and plastic viscosity are inversely proportional to each other, more experimental studies are needed to obtain high fluidity and high viscosity at the same time.

  • PDF

Experimental Study on the Hydration Characteristics of Eggshell Powder in Cement Slurry (계란껍질 분말을 혼입한 시멘트 페이스트의 수화 특성에 관한 실험적 연구)

  • Chen, YuKun;Sun, Yang;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.110-111
    • /
    • 2021
  • The eggshell is a type of bio-waste which is considered hazardous to the environment. In this research, the waste eggshell is utilized as a potential filler in cementitious material. This study has measured by zeta potential to analyze the interaction between the surface of the filler and the calcium ion in the solution. Meanwhile, the effect of eggshell powder on cement hydration process has been determined by isothermal calorimeter. The results show that the surface of eggshell powder have a strong adsorption of Ca2+, and addition of the eggshell powder provides a heterogeneous nucleation site for cement, which promotes the growth of hydration products.

  • PDF

Thermally Activated Fly Ash Cement System with Different FA Contents (FA 함량이 다른 열활성 플라이애쉬 시멘트 시스템)

  • Wang, Zihao;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.114-115
    • /
    • 2021
  • In this study, the effects of thermal activation on the compressive strength and water absorption of fly ash-cement systems were studied. The results show that the increase in curing temperature improves the early-age compressive strength and reduces its water absorption.

  • PDF

The mechanical characteristics and CO2 emmissions of eggshell powder in cement paste (계란껍질 분말을 혼입한 시멘트 페이스트의 역학 특석 및 CO2 배출량 연구)

  • Chen, YuKun;Lee, HanSeung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.135-136
    • /
    • 2021
  • This study investigated the use of different amounts of eggshell powder (ESP), namely 5%, 10%, and 15% by weight, as a substitute for Ordinary Portland Cement. The results show that its flowability and 28-day compressive strength. Meanwhile the carbon dioxide emission was though sustainable assessment analyzed It was concluded that ESP replacement level of around 5% provides the best performance to reduces environmental pollution.

  • PDF

Properties of Steel Corrosion as a Hydration of Mortar with Calcium Aluminate Cement (알루민산칼슘 시멘트를 사용한 모르타르의 수화도에 따른 철근 부식 특성)

  • Min-Cheol Shin;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.214-221
    • /
    • 2024
  • The present study concerns the resistance of calcium aluminate cement (CAC) to steel corrosion. The corrosion behavior of steel, chloride binding/buffering and chloride transport were evaluated in order to predict the risk of steel corrosion. The CAC mortar exhibited no corrosion on steel, irrespective of the curing temperature and CAC types, whereas ordinary Portland cement (OPC) showed a severe corrosion on the steel surface. The chloride binding capacity of CAC found to be was lower than that of OPC, yet buffering capacity against pH decrease was found to be significantly higher in the CAC paste. Furthermore, chloride ingress at all depths was found to be reduced in CAC, thereby reducing the risk of corrosion.

Heat Performance of Rapid Hardening Nano-Cementitious Composite for Repairing of Concrete Structures (콘크리트 구조물 보수를 위한 초속경 나노-시멘트 복합체의 발열성능)

  • Cho, Sanghyeon;Lee, Heeyoung;Yu, Wonjun;Kim, Donghwi;Chung, Wonseok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • Recently, excellent thermal and electrical performance of cementitious composites by mixing nano materials are being studied. The purpose of this study is to research the heat generation and power consumption of rapid hardening nano-cementitious composites. The experiment was carried out after setting the rapid hardening cementitious material, curing day, and supply voltage as parameters. Rapid hardening nano-cementitious materials were classified into cement paste, mortar, and concrete The heat performance of all rapid hardening nano-cementitious composites in curing 1 day has increased over 10℃. The rapid hardening nano-cementitious composites can exhibit heat performance within 1 day. The heat performance of the rapid hardening nano-cementitious composites is maintained after 28 days.

The Development of Multi Stage Separation Ball Mill for Producing Recycled Aggregate (순환 골재 생산을 위한 다단 박리형 볼밀 시스템 개발)

  • Lee, Han-Sol;Yu, Myouing-yuol;Lee, Hoon
    • Resources Recycling
    • /
    • v.30 no.5
    • /
    • pp.17-24
    • /
    • 2021
  • Natural aggregate regular exploitation has led to environmental and resource depletion issues; consequently, construction waste has become an important raw material in the supply of aggregate smoothly. The recycled aggregate produced in the most of recycled aggregate processing company in Korea has a high adhesion ratio of cement paste and mortar, which affects the water absorption ratio and density. Therefore, the quality of recycled aggregate needs to be improved. In this study, we improved the quality of recycled aggregate through the use of a multistage separation ball mill. This ball mill has a sieve which protects the ball mix and improves the motion. Products produced by using multistage separation ball mill were compared with various quality standard for utilization as recycle aggregate. Finally, we confirmed that the multistage separation ball mill can efficiently separate cement paste and mortar from natural aggregate and that it is suitable for the production of recycled aggregates.

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age (초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.133-142
    • /
    • 2008
  • This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.