• Title/Summary/Keyword: 시멘트모르타르

Search Result 749, Processing Time 0.032 seconds

Effect of acid-treatment aggregate on compressive strength of cement mortar (산 처리 골재가 시멘트 모르타르의 압축강도에 미치는 영향)

  • Shi, Yixuan;Jang, Indong;Yi, Chongku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.151-152
    • /
    • 2019
  • This study is aimed at comparing the effect of cement mortar made of sulfuric acid treated ISO standard sand with that of cement mortar made of normal ISO standard sand. In the water absorption test, water absorption of standard sand increases with the increase of immersion time in sulfuric acid solution. The results show that at the water cement ratio of 0.5, the longer the standard sand is immersed in sulfuric acid, the greater the compressive strength of the cement mortar sample.

  • PDF

An Analysis of the Air Void Volume Image Analysis of Porous Cement Mortar Composites (Image analysis를 통한 다공성 시멘트 모르타르 복합체 내 공극량 산출)

  • Son, Dasom;Yi, Chong ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.211-212
    • /
    • 2021
  • This study was conducted to derive quantitative air void volume calculation techniques in various complexes with porosity. Calculation of voids in a complex is an essential factor in improving mechanical properties, and quantitative measurement techniques are needed because the environment is not constant to apply the currently used ASTM criteria. Using the analysis technique obtained through 2D image analysis, it is believed that meaningful results can be derived through Micro CT analysis results and cross-check later.

  • PDF

Compressive Strength and Porosity Characteristics of Cement Mortar Mixed with Liquid and Powder Type Water repellent (액체 및 분체형 발수제를 혼입한 시멘트 모르타르의 압축강도 및 공극 특성)

  • Kim, Wan-Su;Jo, In-Sung;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.96-97
    • /
    • 2020
  • In this study, the compressive strength and porosity characteristics of cement mortar mixed with liquid and powder composite water repellent were evaluated. When the liquid water repellent was mixed, the compressive strength at 28 days of age was 42% compared to OPC, and the compressive strength was greatly reduced. However, the 28-day compressive strength of the powder water repellent mixture and P5L1, P6L1 liquid and powder composite water repellent was about 97% compared to OPC, and there was little decrease in compressive strength.

  • PDF

An Fundamental Study on the Measurement of Cement Mortar Unit-Water Content Using High Frequency Moisture Sensor (고주파 수분 센서를 이용한 시멘트 모르타르의 단위수량 측정에 관한 기초적 연구)

  • Cho, Yang-Je;Kim, Min-Seo;Yoon, Jong-Wan;Park, Tae-Joon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.6-7
    • /
    • 2020
  • The unit-water content of concrete is one of the important factors in determining the quality of concrete and is directly related to the durability of the construction structure, and the current method of measuring the unit-water content of concrete is applied by the Air Meta Act and the Electrostatic Capacity Act. However, there are complex and time-consuming problems with measurement methods. Therefore, high frequency moisture sensor was used for quick and high measurement, and unit-water content of mortar was evaluated through machine running and deep running based on measurement big data.

  • PDF

Characteristics of Cement Mortar using Water Repellent with Controlled Surface Structure to Imitate Ecology (생태모방 표면구조 제어에 의한 발수제 혼입 시멘트 모르타르 특성)

  • Kim, Sang Jin;Kang, Hye Ju;Kang, Suk Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.76-77
    • /
    • 2021
  • compared and reviewed the water repellency and strength characteristics by controlling the surface stamping size and fine aggregate ratio of cement mortar mixed with water repellent as a method to control the ecological imitation surface structure. As a result of measuring the contact angle, the higher the ratio of fine aggregate, the larger the contact angle. The contact angle increased when the surface structure was changed by stamping, and increased as the stamping size became smaller. In the surface stamping of mesh#150, the contact angle was particularly increased.

  • PDF

Application of waste biomass as ecological corrosion inhibitors for steel rebar embedded in cement mortar (시멘트 모르타르에 매립된 철근의 생태학적 부식방지제로서 폐기물 바이오매스의 적용)

  • Karthick, Subbiah;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.111-112
    • /
    • 2022
  • In this present study, the corrosion mitigation effect of conifer cone extract (CC) was examined in the cement mortar to improve the steel rebar (SR) corrosion resistance. The corrosion inhibition properties of the SR embedded in cement mortar (CM) admixed with different percentage (0, 0.5, 1.0, 1.5, 2.0 %) of CC was studied by open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) tests. This result confirms that the CM with 0.5% of CC added has better corrosion resistance than the blank specimen (0 % of CC). Although, the percentage of CC increase above 0.5%, the CC could yield a negative impact on CM properties in terms of reducing the corrosion resistance due to the reduction of cement hydration reaction. It was highlighted that the SR embedded in CM containing 0.5% of CC had increased corrosion resistance.

  • PDF

Mechanical Properties of Self-Healing Mortar Using Cementitious Material-Based Capsule (시멘트계 재료 기반 캡슐을 사용한 자기치유 모르타르의 역학 특성)

  • Lee, Jae-In;Im, Soo-Bin;Na, Bum-Su;Kim, Chae-Young;Yoon, Joo-Hoo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.149-150
    • /
    • 2023
  • Although concrete is a material widely used in the construction industry, it is very vulnerable to cracking and has a disadvantage in that durability deteriorates when cracks occur. When cracks occur, harmful factors are introduced through the micro-cracks of the structure, reducing durability. Therefore, in this study, as part of a study to alleviate the problems of maintenance and durability deterioration due to cracks in concrete structures, the mechanical properties of self-healing mortar according to the size of the capsule made of cement material were reviewed.

  • PDF

Properties of Cement Mortar with Graphene Oxide and Admixture (산화 그래핀과 혼화제를 혼입한 시멘트 모르타르의 특성)

  • Kim, Wan-Su;Park, Chang-Gun;Choi, Sung-Woo;Ryu, Deuk-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.261-262
    • /
    • 2023
  • Nanomaterials are being actively studied in the fields of cement and concrete. However, research on other nanomaterials is insufficient because much of the carbon-based nanomaterials are made up of carbon nanotubes. Therefore, in this study, carbon-based water-soluble graphene oxide was mixed into mortar according to the cement replacement rate to conduct a characteristic evaluation. As a result, as the substitution rate of graphene oxide increased, workability decreased, and there was no effect of enhancing compressive strength. In addition, it was confirmed that the compressive strength decreased due to a large amount of air bubbles when the mixture was mixed for the purpose of improving workability.

  • PDF

Effect of Recycled Fine Aggregates and Fly Ash on the Mechanical Properties of PVA Fiber-Reinforced Cement Composites (순환잔골재 및 플라이애시가 PVA 섬유보강 시멘트 복합체의 역학적 특성에 미치는 영향)

  • Nam, Yi-Hyun;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do;Kim, Sun-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.149-157
    • /
    • 2017
  • As the amount of construction wastes increase, reuse of recycled materials is being considered in research areas. While there are many experimental investigations focusing on development of mortar and concrete using the recycled materials, the studies regarding the fiber-reinforced cement composites (FRCCs) using recycled materials are still limited. In this paper, an experimental attempt has been made to investigate the effect of recycled fine aggregates and fly ash on the mechanical properties of PVA FRCCs. The cement and natural sand were respectively replaced by fly ash and recycled fine aggregates at two content levels, 25% and 50%. Ten types of PVA FRCCs mixes were fabricated and tested to investigate the flexural, compressive and direct tensile behaviors. The test results show that flexural, compressive and direct tensile strength were decreased with increase in fly ash content at all ages. In particular, flexural, compressive and direct tensile strengths of specimens, containing 50% recycled fine aggregates and 50% fly ash, showed the lowest values. The modulus of elasticity of specimens showed similar trend to the 28-day compressive strength. Poisson's ratio was increased with increase in fly ash and recycled fine aggregates content.

Effective Porosity Variation of Cement Samples According to Vacuum Pressure and Time (진공의 압력과 시간을 달리할 때 시멘트시험편의 유효공극률 변화)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.163-176
    • /
    • 2012
  • Effective porosity has been measured for cement specimen as a function of vacuum time and pressure in the vacuum saturation process. Six cement specimen are used; three of them are made of the same ratio of cement and sand, the other three are 100% cement mortar, of which average porosity is about 25% and 40%, respectively. Using the 6 samples, measured effective porosities are compared and examined with 5 different vacuum pressures (2, 4, 6, 8, 10 torr) and times (20, 40, 60, 80, 100 minute), respectively. Comparing measured effective porosity from experiments when vacuum time varies from 100 minute to 20 minute with 20 minute step and vacuum pressure is fixed to 10, 6, and 2 torr, average deviation decreases as 0.6, 0.5, and 0.2% respectively. Comparing measured effective porosity from experiments when vacuum pressure varies from 2 torr to 10 torr with 2 torr step and vacuum time is fixed to 100, 60, and 20 minute, average deviation increases as vacuum time decreases. These results can be a background of suggested method of ISRM that describes the vacuum time longer than 60 minute and vacuum pressure higher than 6 torr. In this study, only qualitative discussion can be possible for the effects on the effective porosity by decreasing 20 minute vacuuming time at the same pressure or by decreasing 2 torr of vacuum pressure at the same vacuum time. This is because the sample could not reached to perfectly dried condition even though the sample were dried at $105^{\circ}C$ and following the ISRM suggested method, so that initial water content could not be the same at each experiment.