• Title/Summary/Keyword: 시리얼 링크

Search Result 10, Processing Time 0.027 seconds

Design Optimization of CML-Based High-Speed Digital Circuits (전류모드 논리 회로 기반의 고속 디지털 회로 디자인 최적화)

  • Jang, Ikchan;Kim, Jintae;Kim, SoYoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.57-65
    • /
    • 2014
  • This paper presents a framework that is based on a reconfigurable macro-model of current-mode logic (CML) high-speed digital circuits enabling equation-based design optimization. The proposed macro-model is compatible with geometric programming, thereby enabling constraint-driven top-level power optimization. The proposed optimization framework is applied to a design of CML based serial-link transmitter with user-defined design specifications as an example of high speed digital circuits using 45nm and 90nm CMOS technology. The proposed optimization framework can derive a design with optimal power efficiency for given transistor technology nodes.

A Study on protocol analysis between KTX control system and sub-devices (고속열차(KTX)제어시스템과 하부장치간 프로토콜 분석연구)

  • Kim, Hyeong-In;Jung, Sung-Youn;Kim, Hyun-Shik;Jung, Do-Won;Kim, Chi-Tae;Kim, Dong-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.179-186
    • /
    • 2007
  • KTX control systems mutually control OBCS, ATC, MBU, TECA, MDT, ABU, HVAC, TRAE, PID and FDTR, KTX OBCS as master, and controls other sub-control devices as slave, using various serial lines. In order to analyze physical structure of various serial link lines and mutual data transmission structure, serial line analyzer is used in many ways. To use serial line analyzer, prior and professional technics about High Speed Train and experience of using device are necessary. In spite of difficult situation of space and environment where we work for maintenance of High Speed Train, in presenting basic structure about physical connection method aquired by sub-device serial line data collection and about communication data analysis, I hope that this research will be helpful for the person who work for similar area. Also, I hope that this research will help diagnostic work of High Speed Train, which is necessary for test run of independently developed High Speed Train.

  • PDF

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

Design of a Multiphase Clock Generator for High Speed Serial Link (고속 시리얼 링크를 위한 다중 위상 클럭 발생기의 설계)

  • 조경선;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.277-280
    • /
    • 2001
  • The proposed clock generator lowers the operating frequency in a system core though it keeps data bandwidth high because it has a multiphase clocking architecture. Moreover. it has a dual loop which is comprised of an inner analog phase generation loop and outer digital phase control loop. It has both advantages of DLL's wide operating range and DLL's low jitter The proposed design has been demonstrated in terms of the concept and Hspice simulation. All circuits were designed using a 0.25${\mu}{\textrm}{m}$ CMOS process and simulated with 2.5 V power supply.

  • PDF

4-Channel 3.2/6.4-Gbps Dual-rate Transmitter (채널 3.2/6.4 Gbps 이중 전송률 송신기)

  • Kim, Du-Ho;Choi, Woo-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.37-43
    • /
    • 2010
  • As the speed of A/V streaming, the transmission-speed requirement of serial link is continuously increasing. Consequently, commercial standards, which are released previously, are increasing transmission speed in their newly-updated versions. The flexibility between previous and updated versions is very important requirement, therefore, the transceiver which can operates at more than one data rate is important market demand. This paper demonstrates 4-channel 3.2/ 6.4 Gbps transmitter, which is capable of selecting 1, 1.5, 2, and 3 times of pre-emphasis and 200, 300, 400, and 600 mVdiff,p2p of output swing. The prototype chip was fabricated using $0.13{\mu}m$ CMOS process. Its performances are verified on PCB using COB packaging.

Design of a Clock and Data Recovery Circuit for High-Speed Serial Data Link Application (고속 시리얼 데이터 링크용 클럭 및 데이터 복원회로 설계)

  • 오운택;이흥배;소병춘;황원석;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1193-1196
    • /
    • 2003
  • This paper proposes a 2x oversampling method with a smart sampling for a clock and data recovery(CDR) circuit in a 2.5Gbps serial data link. In the conventional 2x oversampling method, the "bang-bang" operation of the phase detection produces a systematic jitter in CDR. The smart sampling in phase detection helps the CDR to remove the "bang-bang" operation and to improve the jitter performance. The CDR with the proposed 2x oversampling method is designed using Samsung 0.25${\mu}{\textrm}{m}$ process parameters and verified by simulation. Simulation result shows the proposed 2x oversampling method removes the systematic jitter.e systematic jitter.

  • PDF

Design of a 2.5Gbps Serial Data Link CMOS Transceiver (2.5Gbps 시리얼 데이터 링크 CMOS 트랜시버의 설계)

  • 이흥배;오운택;소병춘;황원석;김수원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1185-1188
    • /
    • 2003
  • This paper describes a design for a 2.5Gb/s serial data link CMOS transceiver based on the InfiniBand$^{TM}$ specification. The transceiver chip integrates data serializer, line driver, Tx PLL, deserializer, clock recovery, and lock detector. The designed transceiver is fabricated in a 0.25 ${\mu}{\textrm}{m}$ CMOS mixed-signal, 1-poly, 5-metal process. The first version chip occupies a 3.0mm x 3.3mm area and consumes 450mW with 2.5V supply. In 2.5 Gbps, the output jitter of transmitter measured at the point over a 1.2m, 50Ω coaxial cable is 8.811ps(rms), 68ps(p-p). In the receiver, VCO jitter is 18.5ps(rms), 130ps(p-p), the recovered data are found equivalent to the transmitted data as expected. In the design for second version chip, the proposed clock and data recovery circuit using linear phase detector can reduce jitter in the VCO of PLL.L.

  • PDF

40Gb/s Clock and Data Recovery Circuit with Multi-phase LC PLL in CMOS $0.18{\mu}m$ (LC형 다중 위상 PLL 이용한 40Gb/s $0.18{\mu}m$ CMOS 클록 및 데이터 복원 회로)

  • Ha, Gi-Hyeok;Lee, Jung-Yong;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.36-42
    • /
    • 2008
  • 40Gb/s CMOS Clock and Data Recovery circuit design for optical serial link is proposed. The circuit generates 8 multiphase clock using LC tank PLL and controls the phase between the clock and the data using the $2{\times}$ oversampling Bang-Bang PD. 40Gb/s input data is 1:4 demultiplexed and recovered to 4 channel 10Gb/s outputs. The design was progressed to separate the analog power and the digital power. The area of the chip is $2.8{\times}2.4mm^2$ for the inductors and the power dissipation is about 200mW. The chip has been fabricated using 0.18um CMOS process. The measured results show that the chip recovers the data up to 9.5Gb/s per channel(Equivalent to serial input rate of up to 38Gb/s).

3.125Gbps Reference-less Clock/Data Recovery using 4X Oversampling (레퍼런스 클록이 없는 3.125Gbps 4X 오버샘플링 클록/데이터 복원 회로)

  • Lee, Sung-Sop;Kang, Jin-Ku
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.10 s.352
    • /
    • pp.28-33
    • /
    • 2006
  • An integrated 3.125Gbps clock and data recovery (CDR) circuit is presented. The circuit does not need a reference clock. It has a phase and frequency detector (PFD), which incorporates a bang-bang type 4X oversampling PD and a rotational frequency detector (FD). It also has a ring oscillator type VCO with four delay stages and three zero-offset charge pumps. With a proposed PD and m, the tracking range of 24% can be achieved. Experimental results show that the circuit is capable of recovering clock and data at rates of 3.125Gbps with 0.18 um CMOS technology. The measured recovered clock jitter (p-p) is about 14ps. The CDR has 1.8volt single power supply. The power dissipation is about 140mW.

A 10Gb/s Analog Adaptive Equalizer for Backplanes (백플레인용 10Gbps 아날로그 어댑티브 이퀄라이저)

  • Yoo, Kwi-Sung;Han, Gun-Hee;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.9
    • /
    • pp.34-39
    • /
    • 2007
  • Serial links via backplane channels suffer from severe signal integrity problems which are normally caused by channel imperfections, such as flat loss, frequency-dependent loss, reflection, etc. Particularly, the frequency-dependent loss causes ISI(Inter-Symbol-Interference) at signal waveforms. Therefore, adaptive equalizing techniques have been exploited in many products to facilitate the ISI problem. In this paper, we present an analog adaptive equalizer circuit designed in a $0.18{\mu}m$ CMOS process. It achieves 10Gb/s data transmission through a long 34-inch backplane channel(or transmission line). The post-layout simulations demonstrate $8ps_{p-p}$ jitter with 10mW power dissipation. The core of the adaptive equalizer occupies the area of $0.56mm^2$.