• Title/Summary/Keyword: 시나리오기반 학습

Search Result 151, Processing Time 0.029 seconds

Simulation-Based Damage Estimation of Helideck Using Artificial Neural Network (인공 신경망을 사용한 시뮬레이션 기반 헬리데크 손상 추정)

  • Kim, Chanyeong;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.359-366
    • /
    • 2020
  • In this study, a simulation-based damage estimation method for helidecks is proposed using an artificial neural network. The structural members that share a connecting node in the helideck are regarded as a damage group, and a total of 37,400 damage scenarios are numerically generated by applying randomly assigned damage to up to three damage groups. Modal analysis is then performed for all the damage scenarios, which are selectively used as either training or validation or verification sets based on the purpose of use. An artificial neural network with three hidden layers is constructed using a PyTorch program to recognize the patterns of the modal responses of the helideck model under both damaged and undamaged states, and the network is successively trained to minimize the loss function. Finally, the estimated damage rate from the proposed artificial neural network is compared to the actual assigned damage rate using 400 verification scenarios to show that the neural network is able to estimate the location and amount of structural damage precisely.

A study of CAD(Computer Aided diagnosis) and CAP(Computer Aided Prediction) Frameworks for high-risk patients in ubiquitous environment using Neural Network (유비쿼터스 환경에서 고위험군 환자의 생체신호를 이용한 실시간 신경망 기반의 질병징후탐지시스템(CAD) 및 예측시스템(CAP)의 프레임웍 연구)

  • Jeong, In-Seong;Kim, Cheol-Hwan;Park, Seung-Chan;Wang, Ji-Nam
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.475-481
    • /
    • 2005
  • 현재 국내외에서는 유비쿼터스에 대한 연구 및 의료도메인에 대한 많은 연구가 진행되고 있다. 그러나 기존의 연구들은 전체적인 시스템에 대한 연구가 대부분이어서 실제 환경을 구축하는데 상당한 어려움이 따르고 있다. 본 연구에서는 위와 같은 문제점을 해결하기 위하여 고위험군 환자를 대상으로 다음과 같은 시나리오를 작성하였다. 시나리오는 Home -medical 서비스, Emergency call center 서비스 그리고 응급차량 서비스로 구성하였다. 본 연구에서는 위와 같은 시나리오를 기반으로 고위험군 환자의 생체 신호를 획득한 후 신경망을 이용하여 생체 신호 데이터를 학습한 후 환자의 이상 징후를 진단하는 CAD시스템의 프레임웍과 환자의 위험 수위를 단계별로 분류하는 알고리즘을 제시한다. 또한 과거의 데이터를 이용하여 미래의 환자상태를 예측하는 CAP시스템의 프레임웍을 제시하고 프레임웍에 대한 타당성을 검증하고자 한다.

  • PDF

A Study on Detecting Autonomous Vehicle Accident Area based on DRQN (DRQN 기반 자율주행 차량 사고영역 탐지 연구)

  • Zhang, Yihang;Sung, Yunsick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.430-431
    • /
    • 2022
  • 자율주행 차량의 성능을 검증하기 위해서는 다양한 검증용 시나리오가 필요하기 때문에 최근에는 검증용 시나리오를 자동으로 생성하기 위한 연구들이 수행되고 있다. 실세계에서 발생되는 다양한 현상을 반영한 시나리오를 생성하기 위해서는 자율주행 차량의 주변 상황에 대한 측정이 필요하지만, 공간적인 문제로 한계가 발생한다. 이와 같은 데이터 수집의 어려움을 자율주행 차량에 탑재된 블랙박스의 영상을 통해서 생성하는 것이 가능하다. 본 논문에서는 DRQN을 이용하여 자율주행 차량 사고영역을 자동으로 탐지하는 방법을 제안한다. 동영상에서 추출된 프레임을 분석해서 교통사고 원도우의 초기 위치를 설정한다. DRQN 학습 프레임워크로 차량의 특징을 도출한다. 마지막으로 특징을 기반으로 교통사고 원도우의 크기와 위치를 조정해서 교통사고 영역을 정확하게 찾는다.

Design and Implementation of the English Education Testing System Interface Based on VoiceXML (VoiceXML 기반 영어 교육 평가 시스템 설계 및 구현)

  • Jang, Seung Ju
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.6
    • /
    • pp.75-83
    • /
    • 2005
  • In this paper we studied English listening and speaking test part of foreign language using web and VoiceXML-based education testing system, which is irrespective of time and space. The testing system interface based on VoiceXML consists of user registration module, testing module, and testing result module. User registration module registers user's name and ID, password in user database, and when a tester calls for testing, the User listens to the telephone sound supported by vxml scenario. After that, if a tester logs in, the tester is verified, In the VoiceXML-based education testing system, the manager can reduce time and effort for gaining testing result. The tester listens to the voice by scenario supported by VoiceXML markup language using wire/wireless telephone at any time or anywhere and can improve the effect of foreign language studying by valuating in voice directly. verified. In the VoiceXML-based education testing system, the manager can reduce time and effort for gaining testing result. The tester listens to the voice by scenario supported by VoiceXML markup language using wire/wireless telephone at any time or anywhere and can improve the effect of foreign language studying by valuating in voice directly.

  • PDF

Adaptive Learning System using Real-time Learner Profiling (실시간 학습자 프로파일링을 이용한 적응적 학습 시스템)

  • Yang, Yeong-Wook;Yu, Won-Hee;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.467-473
    • /
    • 2014
  • Adaptive learning system means a system that provides adaptively learning materials according to the learning needs of learners. It consists of expert model, instructional model and student model. Expert model is that stores information which is to be taught. Student model stores the data of learning history and learning information of students. Instructional model provides necessary learning materials for actual leaners. This paper has constructed student model through learner's profile information and instructional model through dynamic scenario construction. After that, We have developed adaptively to provide learning to learners by constructing suitable dynamic scenario based on learners profile information. In the end, satisfaction result about this system showed a high degree of satisfaction and 88%.

Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning (Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류)

  • Kim, Taesu;Kim, Yeongwoo;Kim, Keunhyeong;Kim, Chul Min;Jun, Hyung Seok;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.1
    • /
    • pp.91-104
    • /
    • 2021
  • This study explored users' emotional states identified from the wake-up words -"Hi, KIA!"- using a machine learning algorithm considering the user interface of passenger cars' voice. We targeted four emotional states, namely, excited, angry, desperate, and neutral, and created a total of 12 emotional scenarios in the context of car driving. Nine college students participated and recorded sentences as guided in the visualized scenario. The wake-up words were extracted from whole sentences, resulting in two data sets. We used the soundgen package and svmRadial method of caret package in open source-based R code to collect acoustic features of the recorded voices and performed machine learning-based analysis to determine the predictability of the modeled algorithm. We compared the accuracy of wake-up words (60.19%: 22%~81%) with that of whole sentences (41.51%) for all nine participants in relation to the four emotional categories. Accuracy and sensitivity performance of individual differences were noticeable, while the selected features were relatively constant. This study provides empirical evidence regarding the potential application of the wake-up words in the practice of emotion-driven user experience in communication between users and the artificial intelligence system.

Multiagent system for the Life Long Personalized Task Coordination based on the user behavior patterns (사용자 행동패턴을 기반으로 한 멀티 에이전트 시스템 구조)

  • Kim Min-Kyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.303-306
    • /
    • 2006
  • 유비쿼터스 컴퓨팅의 핵심은 네트워크 환경에 대한 고 가용성이라 할 수 있다. 이러한 사실은 사용자 컨텍스트(Context)가 반영된 서비스를 제공하기 위한 필수조건이 이미 갖추어져 있다는 것을 시사한다. 지금까지 상황인지(Context-Aware) 서비스를 위한 여러 응용들이 제시되어 왔지만, 동적으로 변화하는, 즉 예측하기 어려운 환경을 충분히 반영할 만큼의 유연성을 제공하지 못했다. 왜냐하면, 응용 태스크 시나리오가 시작단계부터 이미 정해져 있었기 때문이다. 여기에, 본 고는 평생동안 개인화된 태스크를 동적으로 생성, 제공할 수 있는 멀티 에이전트 시스템 구조를 제안하고자 한다. 평생 개인화 태스크(Life Long Personalized Task)는 끊임없이 변화하는 사용자의 행동패턴을 반영할 수 있도록, 동적으로 생성, 제공되는 태스크를 의미한다. 이는 태스크 시나리오가 컴파일 타임에 이미 결정되지 않고, 실행 시간 중에 자동으로 생성된다는 것을 의미한다. 이러한 유연성은 평생학습 엔진(Life Long Learning Engine)을 활용함으로써 가능하다. 이 엔진은 사용자의 행동패턴을 학습하며, 결과적으로 사용자 행동패턴 규칙들을 생성한다.

  • PDF

GCM Scenario Downcsaling Method using Multi-Artificial Neural Network and Stochastic Typhoon Model (다지점 인공신경망과 추계학적 태풍모의를 통한 GCM 시나리오 상세화기법)

  • Moon, Su-Jin;Kim, Jung-Joong;Kang, Boo-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.276-276
    • /
    • 2012
  • 일반적으로 기후변화영향에 관한 연구수행을 위해 전지구기후모형(GCM; Global Climate Model)이 사용되고 있다. 하지만 GCM은 공간해상도(Spatial resolution)가 거칠기 때문에 수문학 분야에서 주로 사용되는 유역규모의 지역적인 스케일특성과 물리적 특징을 표현하는데 한계가 있다. 또한 GCM 기후변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67% 이상이 집중되는 계절성을 반영하지 못하고 있으며, 높은 불확실성을 보이고 있다. 본 연구에서는 GCM 기반의 다지점 인공신경망기법을 적용한 상세화(Downscaling)를 실시하였다. GCM의 24개 2D변수에 대한 주성분분석을 실시하여 신경망의 학습인자로 사용하였으며, 학습, 검증 및 예측기간은 각각 1981~1995년, 1996~2000년, 2011~2100년으로 A1B 시나리오를 대상으로 상세화를 실시하였다. 또한, 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline과 Projection 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다.

  • PDF

Development of Teaching and Learning Model of the Education of Information-Communication Technology By GBS (GBS이론을 이용한 정보통신기술교육 교수.학습모형 개발)

  • Lee, Soon-Ho;Kim, Young-Gi
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.240-245
    • /
    • 2007
  • 하루가 다르게 우리 사회의 모습은 정보화, 디지털화 되어 가고 있다. 이러한 시대적 흐름에 맞추어 정보통신기술교육에 대한 관심과 중요성이 커지고 있으며, 단순히 기능을 가르치는 교육에서 문제해결력을 기르는 방향으로 변하고 있다. 이러한 정보통신기술교육의 변화를 반영하기 위해서는 보다 다양하고 체계적인 교수 학습 모형에 대한 연구가 필요하다. 이에 본 연구에서는 구성주의 교육방법론의 하나로 학습자에게 행함에 의한 학습(learning-by-doing)이 이루어지는 모의 상황을 통해 학습 목표를 달성할 수 있도록 하는 목표기반 시나리오학습(Goal-Based Scenario : GBS) 이론을 초등학교 정보통신기술교육에서 활용할 수 있는 교수 학습 모형을 제안하고자 한다. 즉, 교육현장에서 초등학교 학생들에게 적용할 GBS 교수 학습 모형에 대한 연구로 체계적인 정보통신기술교육의 정착에 도움이 되고자 하는데 의의를 둔다.

  • PDF

Development of Scenario-based Robot Design Process (시나리오기반 로봇디자인 프로세스의 개발)

  • Kim, Ji-Hoon;Oh, Kwang-Myung;Kim, Myung-Seok
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1354-1360
    • /
    • 2006
  • 최근 놀라운 성장을 거듭하고 있는 지능형 로봇(Intelligent Robot) 기술은 기존의 주요 활용 분야였던 산업현장이나 연구실과 같은 전문가적 영역을 넘어서 지능형 엔터테인먼트(Entertainment)로봇이나 청소기 로봇의 예에서 볼 수 있듯이 인간의 주요 일상 생활 공간인 가정이나 공공기관의 서비스 분야로 점차 그 활용 영역을 넓혀가고 있다. 학습 보조 교사 도우미 로봇의 개발은 초등학교 교육 현장이 당면하고있는 각종 현안들을 로봇의 활용을 통해서 해결하고자하는 실용적인 목적에서 출발 했다. 이러한 관점에서 볼때 로봇 디자이너의 역할은 전체 개발 프로세스의 말단부에서 로봇 시스템의 외장(Appearance)을 마무리하는 역할을 넘어서 구체적 로봇시스템의 개발에 선행하여 학습보조 교사 도우미 로봇의 잠재적 활용 주체인 학생, 교사, 학부모의 입장에서 각 주체들의 내재적, 외재적 욕구를 효과적으로 만족 시킬 수있는 활용 시나리오(Application Scenario)를 도출, 개발 프로세스 전반에 걸쳐 각 개발 주체들에게 일관된 비젼(vision)과 이미지(image)를 제시하는것이라고 생각되었다. 본연구에서는 학습보조 교사 도우미 로봇 디자인 과제에 있어서 사용자 관찰(User Observation), 유저 다이어리(User Diary), 포커스그룹 인터뷰(F.G.I)등을 바탕으로 로봇의 역할 모델중심, 서비스 영역 중심, 초등학교 교육이념 구현 중심 등 3가지의 서로 다른 컨셉의 로봇 활용 시나리오(Application Scenario)를 제안하였다. 본 연구 결과는 현재 초기 단계에 있는 로봇 디자인 분야의 현실을 감안할때 전체 로봇 개발 프로세스내에서의 향후 산업 디자인이 수행해야 할 역할을 명확하게 보여준다는 점에서 그 의의가 있으며 관련 분야의 연구 활성화에 기여할 것으로 기대된다.

  • PDF