• Title/Summary/Keyword: 시공시스템

Search Result 1,771, Processing Time 0.028 seconds

Development of the Deterioration Models for the Port Structures by the Multiple Regression Analysis and Markov Chain (다중 회귀분석 및 Markov Chain을 통한 항만시설물의 상태열화모델 개발)

  • Cha, Kyunghwa;Kim, Sung-Wook;Kim, Jung Hoon;Park, Mi-Yun;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.229-239
    • /
    • 2015
  • In light of the significant increase in the quantities of goods transported and the development of the shipping industry, the frequency of usage of port structures has increased; yet, the government's budget for the shipping & port of SOC has been reduced. Port structures require systematically effective maintenance and management trends that address their growing frequency of usage. In order to construct a productive maintenance system, it is essential to develop deterioration models of port structures that consider various characteristics, such as location, type, use, constructed level, and state of maintenance. Processes for developing such deterioration models include examining factors that cause the structures to deteriorate, collecting data on deteriorating structures, and deciding methods of estimation. The techniques used for developing the deterioration models are multiple regression analysis and Markov chain theory. Multiple regression analysis can reflect changes over time and Markov chain theory can apply status changes based on a probabilistic method. Along with these processes, the deterioration models of open-type and gravity-type wharfs were suggested.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.

Application of Linear Schedule Chart by Linking Location Information of Construction Project with Horizontal Work Space (수평작업공간을 갖는 건설프로젝트의 위치정보 연동에 의한 선형공정표 적용방안)

  • Han, Seon Ju;Kim, Hyeon Seung;Park, Sang Mi;Kang, Leen Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.601-610
    • /
    • 2018
  • Since the building construction works are repeated vertically in a limited space, there is not a great need for the location information of each activity in the schedule management. On the other hand, civil engineering works such as road and railway projects consist of a large number of earthworks, long bridges, and long tunnels. These types of work should be controlled in a horizontal space according to the linear axis of several tens of kilometers. In other words, since most of the activities are managed in the unit of distance from the start point to the end point, it is possible to improve the efficiency of the schedule management by linking the location information of the activity with the schedule data in the schedule management system. This study presents a methodology for creating a linear schedule chart specific to a project with horizontal work space and compares the convenience with the existing Gantt chart. In addition, the methodology of linking linear schedule chart to the 4D CAD system, which is a typical BIM technology in the construction phase, is presented to improve the usability of BIM. The practical applicability of the proposed methodology was verified statistically.

Confining Effect of Mortar Grouted Splice Sleeve on Reinforcing Bar (모르타르 충전식 철근이음과 구속효과)

  • Ahn, Byung-Ik;Kim, Hyong-Kee;Park, Bok-Man
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.102-109
    • /
    • 2003
  • The grouted splice steeve has been applied widely due to its superior construction efficiency, such as the unnecessity of post concrete and the large allowable limit to the arrangement of reinforcing bars. However, studies on grout-filled splice steeve still have not been sufficiently peformed. The purpose of this study is to investigate the confining effect of mortar grouted splice sleeve on reinforcing bar, known to strengthen the bond capacity between grout mortar and reinforcing bar. To accomplish this objective, totally 6 full-sized specimens were made and tested under monotonic loading. Each specimens were equipped with strain gauges at the 12 location of sleeve and reinforcing bar. The experimental variables adopted in this study are embedment length and size of reinforcing bars. Following conclusions are obtained; 1) Under ultimate strength condition, the confining pressure of grouted splice sleeve calculated from measured tangential and axial strain of the sleeve is over $200{\sim}300kgf/{cm}^2$ at any location of sleeve and improved with reduction in embedment length of reinforcing bar. 2) Untrauer and Henry's equation which describe bond strength of mortar as a function of its compressive strength and confining pressure, predicted the measured bond capacity of this test within the 5% limits.

A Model for Lifecycle CO2 Assessment of Building Structures Considering the Mixture Proportions of Concrete (콘크리트 배합설계를 고려한 구조물의 전과정 CO2평가 모델)

  • Yang, Keun-Hyeok;Seo, Eun-A
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.201-210
    • /
    • 2014
  • The present study proposes a phased model to assess the lifecycle $CO_2$ amount of concrete structures. The considered system boundary is from cradle to recycling, which includes constituent material, transportation, batching and mixing in ready-mixed concrete plant, use and demolition of structure, and crushing and recycling of demolished concrete. The $CO_2$ uptake of concrete by carbonation during lifetime (40 years) of a structure and the recycling life (20 years) after demolition is estimated using a simple approach generalized to predict the carbonation depth from the surfaces of concrete element and recycled aggregates. Based on the proposed phased model, a performance evaluation table is realized to straightforwardly examine the lifecycle $CO_2$ amount of concrete structures. The proposed model demonstrates that the contribution of ordinary portland cement (OPC) to lifecycle $CO_2$ emission of the concrete structure occupies approximately 85%. Furthermore, the $CO_2$ uptake is estimated to be approximately 15~18% of the lifecycle $CO_2$ emissions of concrete structures, which corresponds to be 19~22% of the emissions from OPC production. Overall, the proposed $CO_2$ performance table is expected to be practically useful as a guideline to determine the $CO_2$ emission or uptake at each phase of concrete structures.

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.

Application of Activity-Based Costing(ABC) for Modular Building Construction Indirect Costs Calculation at the Manufacturing Stage (활동기준원가계산법(Actvitiy-Based Costing)에 의한 모듈러 건축물 공장제작단계 간접비 산정 방안)

  • Lee, JeongHoon;Park, Moonseo;Lee, Hyun-Soo;Lee, Kwang-Pyo;Hyun, Hosang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2015
  • Modular construction is combined with manufacturing production process and conventional construction industry technique. Considering characteristic of modular construction production process, manufacturing facilities require indirect costs for utilities, equipment, and overall maintenance, which can affect modular units pricing. However, current modular construction cost classification is inadvertent to reflect the manufacturing overhead costs, because it is generally added as a percentage to sum of labor, material and equipment as it called in single cost pool used. This process is easy to estimate the total construction cost at the project starting points, but it brings on misunderstanding of project profit estimations by "cross subsidization phenomenon". To prevent this situation, in this research aims to provide modular construction overhead cost handling process at the detailed indirect cost calculation for manufacturing stage using Activity-Based Costing as one of the powerful method for overhead costs estimation and allocation. Using this research results, modular construction cost estimators have more detailed cost information of modular units and prevent to misallocate indirect costs. Also, it can be utilized to aid the understanding of the company's profit structure.

Study on Thermal Performance of Energy Textile in Tunnel (터널 지열 활용을 위한 에너지 텍스타일의 열교환 성능 연구)

  • Lee, Chulho;Park, Sangwoo;Sohn, Byonghu;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1907-1914
    • /
    • 2013
  • Textile-type heat exchangers installed on the tunnel walls for facilitating ground source heat pump systems, so called "energy textile", was installed in an abandoned railroad tunnel around Seocheon, South Korea. To evaluate thermal performance of the energy textile, a series of long-term monitoring was performed by artificially applying daily intermittent cooling and heating loads on the energy textile. In the course of the experimental measurement, the inlet and outlet fluid temperatures of the energy textile, pumping rate, temperature distribution in the ground, and air temperature inside the tunnel were continuously measured. From the long-term monitoring, the heat exchange rate was recorded as in the range of 57.6~143.5 W per one unit of the energy textile during heating operation and 362.3~558.4 W per one unit during cooling operation. In addition, the heat exchange rate of energy textile was highly sensitive to a change in air temperature inside the tunnel. The field measurements were verified by a 3D computational fluid dynamics analysis (FLUENT) with the consideration of air temperature variation inside the tunnel. The verified numerical model was used to evaluate parametrically the effect of drainage layer in the energy textile.

A Study on Applicability of Pre-splitting Blasting Method According to Joint Frequency Characteristics in Rock Slope (암반사면의 절리빈도 특성에 따른 프리스플리팅 발파공법의 적용성 연구)

  • Kim, Shin;Lee, Seung-Joong;Choi, Sung-O.
    • Explosives and Blasting
    • /
    • v.28 no.2
    • /
    • pp.1-16
    • /
    • 2010
  • This study focuses on the phenomenon that the blast damaged zone developed on rock slope surfaces can be affected by joint characteristics rather than by explosive power when the pre-splitting is applied to excavate a jointed rock slope. The characteristics of rock joints on a slope were investigated and categorized them into 4 cases. Also an image processing system has been used for comparing the distribution pattern of rock blocks. From this investigation, it was found that the rock blocks bigger than 2,000 mm occupied 42% in the case of single joint set and it showed the well efficiency of pre-splitting blast. In cases of 2~3 parallel joint sets and 2~3 intersecting joint sets are developed on rock surfaces, the rock blocks in the range of 1,000~2,000 mm occupied 43.6% and 35.8%, respectively, and it showed that the efficiency of pre-splitting was decreased. When more than 3 joint sets are randomly developed, however, the rock blocks in the range of 250~500 mm occupied 35% and there was no block bigger than 1,000 mm. This denotes that the blasting with pre-splitting was not effective. The numerical analysis using PFC2D showed that the blast damaged zone in a rock mass could be directly influenced by the pre-splitting. It is, therefore, required to investigate the discontinuity pattern on rock surfaces in advance, when the pre-splitting method is applied to excavate jointed rock slopes and to apply a flexible blating design with a consideration of the joint characteristics.

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.