Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.
The purpose of this study is to verify that several theories explaining the determinants of welfare expenditure is applied to the family policy expenditure and to find out if there' re unique determinants of the family policy expenditure. We analyzed the data (OECD 14 countries for 1980~2005) by pooled time series analysis. As for industrialization theory, female labor force participation rate has positive effect on family policy expenditure while population under 15-year children has negative effect, which refers to the demand of family policies is that of female workers, not children's. Power resource theory is applied to the determinants of family policy expenditure as those of welfare expenditure. Women's political & economic empowerment has partly positive effects on family policy expenditure, which is the evidence of the effectiveness of feminist theory. In the institutional theory, we verified the effect of policy legacy but couldn't find out the crowding-out effect. The theoretical implication of this study is the empirical verification of the theories explaining the determinants of welfare expenditure being applied to the family policy expenditure. We also suggested the political and institutional foundation to effectively respond to the new social risks in spite of budget constraints, which can be a policy implication.
Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.
Recently, investors' interest and the influence of stock-related information dissemination are being considered as significant factors that explain stock returns and volume. Besides, companies that develop, distribute, or utilize innovative new technologies such as artificial intelligence have a problem that it is difficult to accurately predict a company's future stock returns and volatility due to macro-environment and market uncertainty. Market uncertainty is recognized as an obstacle to the activation and spread of artificial intelligence technology, so research is needed to mitigate this. Hence, the purpose of this study is to propose a machine learning model that predicts the volatility of a company's stock price by using the internet search volume of artificial intelligence-related technology keywords as a measure of the interest of investors. To this end, for predicting the stock market, we using the VAR(Vector Auto Regression) and deep neural network LSTM (Long Short-Term Memory). And the stock price prediction performance using keyword search volume is compared according to the technology's social acceptance stage. In addition, we also conduct the analysis of sub-technology of artificial intelligence technology to examine the change in the search volume of detailed technology keywords according to the technology acceptance stage and the effect of interest in specific technology on the stock market forecast. To this end, in this study, the words artificial intelligence, deep learning, machine learning were selected as keywords. Next, we investigated how many keywords each week appeared in online documents for five years from January 1, 2015, to December 31, 2019. The stock price and transaction volume data of KOSDAQ listed companies were also collected and used for analysis. As a result, we found that the keyword search volume for artificial intelligence technology increased as the social acceptance of artificial intelligence technology increased. In particular, starting from AlphaGo Shock, the keyword search volume for artificial intelligence itself and detailed technologies such as machine learning and deep learning appeared to increase. Also, the keyword search volume for artificial intelligence technology increases as the social acceptance stage progresses. It showed high accuracy, and it was confirmed that the acceptance stages showing the best prediction performance were different for each keyword. As a result of stock price prediction based on keyword search volume for each social acceptance stage of artificial intelligence technologies classified in this study, the awareness stage's prediction accuracy was found to be the highest. The prediction accuracy was different according to the keywords used in the stock price prediction model for each social acceptance stage. Therefore, when constructing a stock price prediction model using technology keywords, it is necessary to consider social acceptance of the technology and sub-technology classification. The results of this study provide the following implications. First, to predict the return on investment for companies based on innovative technology, it is most important to capture the recognition stage in which public interest rapidly increases in social acceptance of the technology. Second, the change in keyword search volume and the accuracy of the prediction model varies according to the social acceptance of technology should be considered in developing a Decision Support System for investment such as the big data-based Robo-advisor recently introduced by the financial sector.
Over the past decades, daily sea surface temperature (SST) composite data have been produced using periodically and extensively observed satellite SST data, and have been used for a variety of purposes, including climate change monitoring and oceanic and atmospheric forecasting. In this study, we evaluated the accuracy and analyzed the error characteristic of the SST composite data in the sea around the Korean Peninsula for optimal utilization in the regional seas. We evaluated the four types of multi-satellite SST composite data including OSTIA (Operational Sea Surface Temperature and Sea Ice Analysis), OISST (Optimum Interpolation Sea Surface Temperature), CMC (Canadian Meteorological Centre) SST, and MURSST (Multi-scale Ultra-high Resolution Sea Surface Temperature) collected from January 2016 to December 2016 by using in-situ temperature data measured from the Ieodo Ocean Research Station (IORS). Each SST composite data showed biases of the minimum of 0.12℃ (OISST) and the maximum of 0.55℃ (MURSST) and root mean square errors (RMSE) of the minimum of 0.77℃ (CMC SST) and the maximum of 0.96℃ (MURSST) for the in-situ temperature measurements from the IORS. Inter-comparison between the SST composite fields exhibited biases of -0.38-0.38℃ and RMSE of 0.55-0.82℃. The OSTIA and CMC SST data showed the smallest error while the OISST and MURSST data showed the most obvious error. The results of comparing time series by extracting the SST data at the closest point to the IORS showed that there was an apparent seasonal variation not only in the in-situ temperature from the IORS but also in all the SST composite data. In spring, however, SST composite data tended to be overestimated compared to the in-situ temperature observed from the IORS.
Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.
Lee, Hee-Jin;Nam, Won-Ho;Jason A. Otkin;Yafang Zhong;Xiang Zhang;Mark D. Svoboda
Journal of Korea Water Resources Association
/
v.57
no.8
/
pp.509-518
/
2024
Flash drought is a rapid-onset drought that occurs rapidly over a short period due to abrupt changes in meteorological and environmental factors. In this study, we utilized satellite-based soil moisture product from the Advanced Microwave Scanning Radiometer-2(AMSR2) ascending X-band to calculate the weekly Flash Drought Intensity Index (FDII). We also analyzed the characteristics of flash droughts on the Korean Peninsula over a 10-year period from 2013 to 2022. The analysis of monthly spatial distribution patterns of the irrigation period across the Korean Peninsula revealed significant variations. In North Korea (NK), a substantial increase in the rate of intensification (FD_INT) was observed due to the rapid depletion of soil moisture, whereas South Korea (SK) experienced a significant increase in drought severity (DRO_SEV). Additionally, regional time series analysis revealed that both FD_INT and DRO_SEV were significantly high in the Gangwon province of both NK and SK. The estimation of probability density by region revealed a clear difference in FD_INT between NK and SK, with SK showing a higher probability of severe drought occurrence primarily due to the high values of DRO_SEV. As a result, it is inferred that the occurrence frequency and damage of flash droughts in NK are higher than those in SK, as indicated by the higher density of large FDII values in the NK region. We analyzed the correlation between DRO_SEV and the Evaporative Stress Index (ESI) across the Korean Peninsula and confirmed a positive correlation ranging from 0.4 to 0.6. It is concluded that analyzing overall drought conditions through the average drought severity holds high utility. These findings are expected to contribute to understanding the characteristics of flash droughts on the Korean Peninsula and formulating post-event response plans.
In order to examine the relative accuracy of satellite observations and model reanalyses about lower stratospheric temperature trends, two satellite-observed Microwave Sounding Unit (MSU) channel 4 (Ch 4) brightness temperature data and two GCM (ECMWF and GEOS) reanalyses during 1981${\sim}$1993 have been intercompared with the regression analysis of time series. The satellite data for the period of 1980${\sim}$1999 are MSU4 at nadir direction and SC4 at multiple scans, respectively, derived in this study and Spencer and Christy (1993). The MSU4 temperature over the globe during the above period shows the cooling trend of -0.35 K/decade, and the cooling over the global ocean is 1.2 times as much as that over the land. Lower stratospheric temperatures during the common period (1981${\sim}$1993) globally show the cooling in MSU4 (-0.14 K/decade), SC4 (-0.42 K/decade) and GEOS (-0.15 K/decade) which have strong annual cycles. However, ECMWF shows a little warming and weak annual cycle. The 95% confidence intervals of the lower stratospheric temperature trends are greater than those of midtropospheric (channel 2) trends, indicating less confidence in Ch 4. The lapse rate in the trend between the above two atmospheric layers is largest over the northern hemispheric land. MSU4 has low correlation with ECMWF over the globe, and high value with GEOS near the Korean peninsula. Lower correlations (r < 0.6) between MSU4 and SC4 (or ECMWF) occur over $30^{\circ}$N latitude belt, where subtropical jet stream passes. Temporal correlation among them over the globe is generally high (r > 0.6). Four kinds of lower stratospheric temperature data near the Korean peninsula commonly show cooling trends, of which the SC4 values (-0.82 K/decade) is the largest.
The purpose of this study is to find out which artificial intelligence methodology is most suitable for creating a foreign exchange rate prediction model using the indicators of bond market and interest rate market. KTBs and MSBs, which are representative products of the Korea bond market, are sold on a large scale when a risk aversion occurs, and in such cases, the USD/KRW exchange rate often rises. When USD liquidity problems occur in the onshore Korean market, the KRW Cross-Currency Swap price in the interest rate market falls, then it plays as a signal to buy USD/KRW in the foreign exchange market. Considering that the price and movement of products traded in the bond market and interest rate market directly or indirectly affect the foreign exchange market, it may be regarded that there is a close and complementary relationship among the three markets. There have been studies that reveal the relationship and correlation between the bond market, interest rate market, and foreign exchange market, but many exchange rate prediction studies in the past have mainly focused on studies based on macroeconomic indicators such as GDP, current account surplus/deficit, and inflation while active research to predict the exchange rate of the foreign exchange market using artificial intelligence based on the bond market and interest rate market indicators has not been conducted yet. This study uses the bond market and interest rate market indicator, runs artificial neural network suitable for nonlinear data analysis, logistic regression suitable for linear data analysis, and decision tree suitable for nonlinear & linear data analysis, and proves that the artificial neural network is the most suitable methodology for predicting the foreign exchange rates which are nonlinear and times series data. Beyond revealing the simple correlation between the bond market, interest rate market, and foreign exchange market, capturing the trading signals between the three markets to reveal the active correlation and prove the mutual organic movement is not only to provide foreign exchange market traders with a new trading model but also to be expected to contribute to increasing the efficiency and the knowledge management of the entire financial market.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.1
/
pp.55-73
/
2024
Unicorn companies are attracting attention around the world as they are recognized for their high corporate value in a short period of time as an innovative business models. Their growth process presents good lessons for the startup ecosystem and have a positive impact on national economic development and job creation. However, previous studies related to unicorn companies are focused on 'event studies' and 'case studies' such as characteristics of founders, environmental factors, business models and success/failure cases of companies already recognized as unicorns rather than a multifaceted approach. The occurrence of unicorn companies and Macroscopic analysis of related factors is lacking. Against this background, this study are considering the characteristics of unicorns examined through previous research and the current status unicorns with a high proportion of technology companies, the purpose was to analyze the impact of the country's technological competitiveness, such as 'technology human resource index', 'R&D index', and 'technology infrastructure index', on the increase in unicorn companies. For statistical analysis, data published by various international organizations, the Bank of Korea, and Statistics Korea from 2017 to 2020 and unicorn company data compiled by CB Insights were used as panel data for 44 countries to be tested by multiple regression analysis. As a result of the study, it was confirmed that the number of science majors had a positive (+) effect on the increase of unicorn companies in the case of technology human resource index, and in the case of R&D index, the total amount of R&D investment had a positive (+) effect on the increase of unicorn companies, while the number of Triad Patents Families and the number of scientific and technological papers published had a negative (-) effect on the increase of unicorn companies. Finally, in the case of technology infrastructure index, it was confirmed that the number of the world's 500th-ranked universities had a positive (+) effect on the increase of unicorn companies. This study is the first to reveal the causal relationship between national technological competitiveness and unicorn company growth based on country-specific and time-series empirical data, which were insufficiently covered in previous studies. and compared to the UN's ranking of the global industrial competitiveness index and the OECD's total R&D investment by country, Korea is considered to have technological and growth potential, while the number of unicorn companies driving growth as leaders of the innovative economy is relatively small, so the research results can be used when establishing policies to discover and foster unicorn companies in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.