• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.033 seconds

Compaison of Reference Evapotranspiration Estimation Approaches (기준증발산 산정방법 비교)

  • Rim, Chang-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.987-991
    • /
    • 2008
  • 본 연구에서는 과거 제안된 5가지의 기준증발산식으로부터 산정된 증발산량과 pan 증발량을 이용하여 상관분석을 실시하였고 pan 계수를 산정하였다. 또한 우리나라 21개 기상관측지점에서 과거 제안된 5가지의 기준증발산식들을 비교하고 그 유사성을 알아보았다. 비교 검토된 기준증발산식은 4가지 방법으로 분류하였으며, 분류된 방법 중에서 각기 대표적인 기준증발산량 산정식을 선정하여 적용하였다. 적용된 기준증발산식은 에너지와 공기동력항의 조합법에 근거한 Penman 식, 단일근원법에 근거한 FAO Penman-Monteith(FAO P-M) 식, 복사자료를 이용한 방법인 Makkink 식과 Priestley-Taylor 식, 그리고 기온자료에 근거한 방법인 Hargreaves 식 등이다. 연구지역 선정을 위하여 기상관측지점이 있는 지역의 지리 및 지형조건을 고려하였다. 사용된 기상자료는 1970년부터 5년 간격으로 8개년의 일별 기상자료를 사용하였다. 적용결과는 수치 및 시계열 도시방법을 통하여 비교하였다. 분석결과에 의하면 대부분의 지역에서 기준증발산식과 pan 증발량과는 0.9 이상의 높은 상관관계를 보이고 있으나, pan 증발량과 비교하여 회귀식의 경사가 1.0보다 크거나 작은 경향을 보이고 있다. 전국 21개 연구지역 중에서 12개 지역에서 대기온도자료에 기초한 Hargreaves 식이 FAO P-M 식과 가장 유사한 것으로 나타났는데, 이들 지역은 대구지역을 제외하고 해안지역에 위치하고 있다. 반면에 내륙에 위치한 8개 지역에서 복사량자료에 기초한 Priestley-Taylor 식이 FAO P-M 식과 유사한 것으로 나타났다.

  • PDF

Volatility Analysis for Multivariate Time Series via Dimension Reduction (차원축소를 통한 다변량 시계열의 변동성 분석 및 응용)

  • Song, Eu-Gine;Choi, Moon-Sun;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.6
    • /
    • pp.825-835
    • /
    • 2008
  • Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.

Forecasts of electricity consumption in an industry building (광, 공업용 건물의 전기 사용량에 대한 시계열 분석)

  • Kim, Minah;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

시공간 베이지안 계층모형-미국 연기온 편차자료에 적용-

  • Lee, Ui-Gyu;Mun, Myeong-Sang;Gunst, Richard F.
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.163-168
    • /
    • 2002
  • 전형적인 시공간모형은 시공간 변이도(semivariogram) 또는 공분산 함수(covariance function)를 필요로 한다. 본 논문에서는 계산하기 어렵고 현실적이지 못한 결합 공분산함수를 통한 고전적 모형 대신, 일련의 독립적인 조건분포를 이용하는 보다 현실적인 베이지안 계층모형을 이용한다. 미국 전 지역에 산재해 있는 138개 기온 관측소로부터 얻어진 61년(1920-1980) 동안의 연기온편차 자료에 시공간 베이지안 계층모형을 적용하고 순수시계열모형에서의 적합값과 제안된 모형의 적합값을 비교분석한다.

  • PDF

Exclusive correlation analysis for algae and environmental factors in weirs of four major rivers in South Korea (4대강 주요지점에서의 조류 발생인자의 배타적 상관성분석에 대한 연구)

  • Lee, Eun Hyung;Kim, Yeonhwa;Kim, Kyunghyun;Kim, Sanghyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.155-164
    • /
    • 2016
  • Algal blooms not only destroy fish habitats but also diminish biological diversity of ecosystem which results into water quality deterioration of 4 major rivers in South Korea. The relationship between algal bloom and environmental factors had been analyzed through the cross-correlation function between concentration of chlorophyll a and other environmental factors. However, time series of cross-correlations can be affected by the stochastic structure such auto-correlated feature of other controllers. In order to remove external effect in the correlation analysis, the pre-whitening procedure was implemented into the cross correlation analysis. The modeling process is consisted of a series of procedure (e.g., model identification, parameter estimation, and diagnostic checking of selected models). This study provides the exclusive correlation relationship between algae concentration and other environmental factors. The difference between the conventional correlation using raw data and that of pre-whitened series was discussed. The process implemented in this paper is useful not only to identify exclusive environmental variables to model Chl-a concentration but also in further extensive application to configure causality in the environment.

The Prediction of Cryptocurrency on Using Text Mining and Deep Learning Techniques : Comparison of Korean and USA Market (텍스트 마이닝과 딥러닝을 활용한 암호화폐 가격 예측 : 한국과 미국시장 비교)

  • Won, Jonggwan;Hong, Taeho
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.1-17
    • /
    • 2021
  • In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.

Space Time Data Analysis for Greenhouse Whitefly (온실가루이의 공간시계열 분석)

  • 박진모;신기일
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.403-418
    • /
    • 2004
  • Recently space-time model in spatial data analysis is widly used. In this paper we applied this model to analysis of greenhouse whitefly. For handling time component, we used ARMA model and autoregressive error model and for outliers, we adapted Mugglestone's method. We compared space-time models and geostatistic model with MSE and MAPE.

Quantile Estimation in Steady-State Simulation using Bonferroni and Bootstrap Methods (안정상태 시뮬레이션에서의 Bonferroni 동시 추정과 붓스트랩을 이용한 백분율 추정)

  • 김세영
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • 안정상태 시뮬레이션의 출력 분석에서 백분율의 추정은 시스템 설계와 성능분석에 매우 유용하다. 그러나 지금까지 지속적으로 발전된 대부분의 안정상태 시뮬레이션 연구는 그 대상이 주로 시스템의 평균값에 치중되어 왔다. 본 논문에서는 시뮬레이션 출력 과정의 안정상태 백분율에 대하여 Bonferroni 동시 신뢰구간 추정 방법과 붓스트랩을 이용하는 신 뢰구간 추정 방법을 제시한다. 이 방법들은 전통적인 방법보다 적은 수의 관찰 값을 가지고 상대적으로 좁은 신뢰구간을 얻으며, 시뮬레이션 출력 분석에 있어 널리 사용되는 배치 평 균 방법을 응용하므로 적용하기도 쉽다. 새로운 두 가지 추정 방법의 타당성을 검증하기 위 하여 이들을 전통적인 배치 백분율 방법과 서로 비교, 평가한다. 대기 행렬 모델(MIMI)과 시계열 모델(AR(1))에 적용한 결과, 새로운 방법들은 전통적인 방법에 비하여 상당히 적은 수의 관찰 값만으로 신뢰성 있는 추정치를 얻을 수 있었다.

  • PDF

Applicability & Limitation of a Deep-Learning Algorithm, LSTM for Hydrologic Time-series Analysis (수문시계열 분석을 위한 딥러닝 알고리즘 LSTM의 적용성 및 한계)

  • Lee, Gi Ha;Jung, Sung Ho;Lee, Dae Eop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.32-32
    • /
    • 2019
  • 본 연구에서는 다양한 시계열 예측에서 우수한 성과를 보이고 있는 딥러닝 알고리즘 LSTM(Long & Short Term Memory) 모형의 수문시계열 분석에 있어서의 적용성을 검토하고, 모형의 활용가능성과 한계점을 제시하는 것을 목적으로 한다. 이를 위해 물리적 강우-유출 모형과의 비교 검토, 일반하천 및 감조하천에서의 수위 예측, 월강수량 및 댐방류량을 활용한 갈수량 예측 등에 LSTM 모형을 적용하고, 결과분석을 통해 모형의 장 단점을 요약하였다. 상기 목적을 위한 모형적용 결과, LSTM 모형은 수문시계열 예측에 있어 우수한 예측능력을 보이고 있으며, 이는 양적/질적 수문자료가 충분히 확보되었지만, 수문해석 모형구축에 제약이 있는 유역에 대해서 보완적 수단으로 사용이 가능할 것으로 판단된다.

  • PDF