• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.037 seconds

I-TGARCH Models and Persistent Volatilities with Applications to Time Series in Korea (지속-변동성을 가진 비대칭 TGARCH 모형을 이용한 국내금융시계열 분석)

  • Hong, S.Y.;Choi, S.M.;Park, J.A.;Baek, J.S.;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.605-614
    • /
    • 2009
  • TGARCH models characterized by asymmetric volatilities have been useful for analyzing various time series in financial econometrics. We are concerned with persistent volatility in the TGARCH context. Park et al. (2009) introduced I-TGARCH process exhibiting a certain persistency in volatility. This article applies I-TGARCH model to various financial time series in Korea and it is obtained that I-TGARCH provides a better fit than competing models.

A Comparison of Robust Parameter Estimations for Autoregressive Models (자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구)

  • Kang, Hee-Jeong;Kim, Soon-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • In this paper, we study several parameter estimation methods used for autoregressive processes and compare them in view of forecasting. The least square estimation, least absolute deviation estimation, robust estimation are compared through Monte Carlo simulations.

  • PDF

Application of Transfer function Model in Han River Basin (한강수계 전이함수 모형 적용)

  • Kang, Kwon-Su;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1512-1516
    • /
    • 2007
  • 자신의 현재와 과거의 시계열데이터만을 가지고 시계열 모형을 구축하는 단변량 ARIMA모형 분석법과는 달리, 관심의 대상이 되는 출력시계열과 이와 관련있는 입력시계열의 동태적 특성을 나타내는 전이함수모형(Transfer function model)을 사용하여 소양강댐, 충주댐, 화천댐에 대한 월별 수문자료를 이용하여 유입량을 예측해 보고자 한다. 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우에 있어 상관된 입력을 설명할 수 있도록 개발된다. 일반적으로 모형을 만드는 전략이 유도되며 실제유역시스템에 적용하여 검토된다. 한강수계 주요 다목적댐인 소양강댐, 충주댐, 화천댐의 수문자료를 가지고 추계학적 모형(TF, TFN)에 의한 결과와 실제유입량을 비교하여 검토하고자 한다.

  • PDF

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

Squared Log-return and TGARCH Model : Asymmetric Volatility in Domestic Time Series (제곱수익률 그래프와 TGARCH 모형을 이용한 비대칭 변동성 분석)

  • Park, J.A.;Song, Y.J.;Baek, J.S.;Hwang, S.Y.;Choi, M.S.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.487-497
    • /
    • 2007
  • As is pointed out by Gourieroux (1997), the volatility effects in financial time series vary according to the signs of the return rates and therefore asymmetric Threshold-GARCH (TGARCH, henceforth) processes are natural extensions of the standard GARCH toward asymmetric volatility modeling. For preliminary detection of asymmetry in volatility, we suggest graphs of squared-log-returns for various financial time series including KOSPI, KOSDAQ and won-Euro exchange rate. Next, asymmetric TGARCH(1,1) model fits are provided in comparisons with standard GARCH(1.1) models.

A Study on Object Based Image Analysis Methods for Land Use and Land Cover Classification in Agricultural Areas (변화지역 탐지를 위한 시계열 KOMPSAT-2 다중분광 영상의 MAD 기반 상대복사 보정에 관한 연구)

  • Yeon, Jong-Min;Kim, Hyun-Ok;Yoon, Bo-Yeol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.66-80
    • /
    • 2012
  • It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.

Compensative Relationship Between Sensible and Latent Heat Fluxes in Surface Energy Partitioning (지표면 에너지 분배에서 현열과 잠열의 상보적인 움직임에 대한 고찰)

  • Kwanghun Choi;Kyungrock Paik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.44-44
    • /
    • 2023
  • 지표면 위 에너지 수지, 즉 순 복사에너지가 어떤 비율로 지열, 현열, 잠열로 분할되는지를 이해하는 것은 매우 중요한 문제이지만, 에너지 분할과 주변 환경 변수 사이의 인과관계를 역학적으로 설명하는 것은 난제로 남아있다. 이 연구에서는 지표면 에너지 분할에서 어떠한 조건에서라도 보편적으로 발견되는 특성을 찾아서 다양한 식생 조건에서 관측된 복사에너지 및 열 플럭스 관측소의 자료를 토대로 각 에너지 항의 시간 변동성을 분석했다. 시계열 분석을 위해 공분산 기법을 통해 관측한 현열 및 잠열 자료를 제공하는 Fluxnet 자료를 사용했으며, International Geosphere-Biosphere Programme (IGBP) 구분법에 따라 낙엽수림, 상록수림, 농지 및 사바나에 위치한 관측소의 자료를 비교 분석했다. 모든 관측소에서 에너지 수지에서 현열과 잠열의 합이 전체 순 복사에너지에서 차지하는 비중은 시간에 따라 큰 변화를 보이지 않는다는 특성을 발견했다. 하지만, 현열 또는 잠열이 차지하는 비중은 큰 계절성을 보여주고 있었다. 이를 종합하면 현열과 잠열이 상호보완적으로 발생한다는 것을 의미한다. 한편 시간에 따른 두 열 플럭스의 움직임은 해당 관측소 근처에서 서식하는 식생 특성과 깊게 관련됐음을 확인했다.

  • PDF

Spatial and Temporal Analysis of Thunderstorm Wind Gust (뇌우 동반 돌풍의 시공간분포 분석)

  • Lee, Sung Su;Kim, Jun Yeong
    • Spatial Information Research
    • /
    • v.21 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • This study presents the analysis of temporal and spatial distribution of occurrences of wind gust over Korea from 2002 to 2009. The events during typhoons are excluded and the topographical effects on the wind speed are also corrected using KBC (2005). As the results, the frequency of the occurrences is as high as 286 and the higher occurrences appear mainly along the coastal area. This study also shows that the uncertainty of the appearance of wind gust during thunderstorm is much higher than in synoptic wind by comparing wind speed records for both events. This study also found that the spatial distribution of cumulative cloud quotient is closely correlated to that of occurrences of thunderstorm wind gust, which suggests the possible utilization of the cloud quotient as weighting factors in assessing wind gust risk.

A Study on the Real Time Forecasting for Monthly Inflow of Daecheong Dam using Seasonal ARIMA Model (계절 ARIMA모형을 이용한 대청댐 유역 실시간 유입량 예측에 관한 연구)

  • Kim, Keun-Soon;Ahn, Jae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1395-1399
    • /
    • 2010
  • 최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.

  • PDF

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.