Communications for Statistical Applications and Methods
/
v.16
no.4
/
pp.605-614
/
2009
TGARCH models characterized by asymmetric volatilities have been useful for analyzing various time series in financial econometrics. We are concerned with persistent volatility in the TGARCH context. Park et al. (2009) introduced I-TGARCH process exhibiting a certain persistency in volatility. This article applies I-TGARCH model to various financial time series in Korea and it is obtained that I-TGARCH provides a better fit than competing models.
Journal of the Korean Data and Information Science Society
/
v.11
no.1
/
pp.1-18
/
2000
In this paper, we study several parameter estimation methods used for autoregressive processes and compare them in view of forecasting. The least square estimation, least absolute deviation estimation, robust estimation are compared through Monte Carlo simulations.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.1512-1516
/
2007
자신의 현재와 과거의 시계열데이터만을 가지고 시계열 모형을 구축하는 단변량 ARIMA모형 분석법과는 달리, 관심의 대상이 되는 출력시계열과 이와 관련있는 입력시계열의 동태적 특성을 나타내는 전이함수모형(Transfer function model)을 사용하여 소양강댐, 충주댐, 화천댐에 대한 월별 수문자료를 이용하여 유입량을 예측해 보고자 한다. 본 연구의 주요 목적은 다변량 추계학적 시스템의 해석을 위한 모형의 추정과 등정을 위한 과정을 개발하는데 있다. 일반적 추계학적 시스템 모형이 표현되며 그것으로부터 수문학적 시스템의 모형을 매우 적절하게 유도하기 위한 다중 입력-단일 출력 TF, TFN모형을 유도하는데 있다. 이 모형은 수문학적 시스템을 위한 경우에 있어 상관된 입력을 설명할 수 있도록 개발된다. 일반적으로 모형을 만드는 전략이 유도되며 실제유역시스템에 적용하여 검토된다. 한강수계 주요 다목적댐인 소양강댐, 충주댐, 화천댐의 수문자료를 가지고 추계학적 모형(TF, TFN)에 의한 결과와 실제유입량을 비교하여 검토하고자 한다.
This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.
Park, J.A.;Song, Y.J.;Baek, J.S.;Hwang, S.Y.;Choi, M.S.
The Korean Journal of Applied Statistics
/
v.20
no.3
/
pp.487-497
/
2007
As is pointed out by Gourieroux (1997), the volatility effects in financial time series vary according to the signs of the return rates and therefore asymmetric Threshold-GARCH (TGARCH, henceforth) processes are natural extensions of the standard GARCH toward asymmetric volatility modeling. For preliminary detection of asymmetry in volatility, we suggest graphs of squared-log-returns for various financial time series including KOSPI, KOSDAQ and won-Euro exchange rate. Next, asymmetric TGARCH(1,1) model fits are provided in comparisons with standard GARCH(1.1) models.
Journal of the Korean Association of Geographic Information Studies
/
v.15
no.3
/
pp.66-80
/
2012
It is necessary to normalize spectral image values derived from multi-temporal satellite data to a common scale in order to apply remote sensing methods for change detection, disaster mapping, crop monitoring and etc. There are two main approaches: absolute radiometric normalization and relative radiometric normalization. This study focuses on the multi-temporal satellite image processing by the use of relative radiometric normalization. Three scenes of KOMPSAT-2 imagery were processed using the Multivariate Alteration Detection(MAD) method, which has a particular advantage of selecting PIFs(Pseudo Invariant Features) automatically by canonical correlation analysis. The scenes were then applied to detect disaster areas over Sendai, Japan, which was hit by a tsunami on 11 March 2011. The case study showed that the automatic extraction of changed areas after the tsunami using relatively normalized satellite data via the MAD method was done within a high accuracy level. In addition, the relative normalization of multi-temporal satellite imagery produced better results to rapidly map disaster-affected areas with an increased confidence level.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.44-44
/
2023
지표면 위 에너지 수지, 즉 순 복사에너지가 어떤 비율로 지열, 현열, 잠열로 분할되는지를 이해하는 것은 매우 중요한 문제이지만, 에너지 분할과 주변 환경 변수 사이의 인과관계를 역학적으로 설명하는 것은 난제로 남아있다. 이 연구에서는 지표면 에너지 분할에서 어떠한 조건에서라도 보편적으로 발견되는 특성을 찾아서 다양한 식생 조건에서 관측된 복사에너지 및 열 플럭스 관측소의 자료를 토대로 각 에너지 항의 시간 변동성을 분석했다. 시계열 분석을 위해 공분산 기법을 통해 관측한 현열 및 잠열 자료를 제공하는 Fluxnet 자료를 사용했으며, International Geosphere-Biosphere Programme (IGBP) 구분법에 따라 낙엽수림, 상록수림, 농지 및 사바나에 위치한 관측소의 자료를 비교 분석했다. 모든 관측소에서 에너지 수지에서 현열과 잠열의 합이 전체 순 복사에너지에서 차지하는 비중은 시간에 따라 큰 변화를 보이지 않는다는 특성을 발견했다. 하지만, 현열 또는 잠열이 차지하는 비중은 큰 계절성을 보여주고 있었다. 이를 종합하면 현열과 잠열이 상호보완적으로 발생한다는 것을 의미한다. 한편 시간에 따른 두 열 플럭스의 움직임은 해당 관측소 근처에서 서식하는 식생 특성과 깊게 관련됐음을 확인했다.
This study presents the analysis of temporal and spatial distribution of occurrences of wind gust over Korea from 2002 to 2009. The events during typhoons are excluded and the topographical effects on the wind speed are also corrected using KBC (2005). As the results, the frequency of the occurrences is as high as 286 and the higher occurrences appear mainly along the coastal area. This study also shows that the uncertainty of the appearance of wind gust during thunderstorm is much higher than in synoptic wind by comparing wind speed records for both events. This study also found that the spatial distribution of cumulative cloud quotient is closely correlated to that of occurrences of thunderstorm wind gust, which suggests the possible utilization of the cloud quotient as weighting factors in assessing wind gust risk.
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.1395-1399
/
2010
최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.
Journal of the Korea Society of Computer and Information
/
v.27
no.5
/
pp.55-67
/
2022
Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.