• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.025 seconds

Data Analysis and Mining for Fish Growth Data in Fish-Farms (양식장 어류 생육 데이터 분석 및 마이닝)

  • Seoung-Bin Ye;Jeong-Seon Park;Soon-Hee Han;Hyi-Thaek Ceong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.127-142
    • /
    • 2023
  • The management of size and weight, which are the growth information of aquaculture fish in fish-farms, is the most basic goal. In this study, the epoch is defined in fish-farms from the time of stocking or dividing to the time of shipment, and the growth data for a total of three epoch is analyzed from a time series perspective. Growth information such as the size and weight of aquaculture fish that occur over time in fish-farms is compared and analyzed with water quality environmental information and feeding information, and a model is presented using the analysis results. In this study, linear, exponential, and logarithmic regression models are presented using the Box-Jenkins method for size and weight by epoch using data obtained in the field.

Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques (Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류)

  • Kwon, Hyoung-Seok;Ryu, Kyeongho;Sim, Ickhyeon;Lee, Choon-Ki;Oh, Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.230-242
    • /
    • 2020
  • We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.

Research for Time Variation of $C_{20}$ Using GRACE and SLR Measurements (GRACE 및 SLR 자료를 이용한 $C_{20}$의 시계열 변화 연구)

  • Huang, He;Yun, Hong-Sic;Lee, Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.513-518
    • /
    • 2008
  • The research of global-scale mass redistribution and it changed by Earth gravity filed variation observations, including Earth's oblateness $J_2$(also called low degree spherical harmonic coefficient $C_{20}$), is in continuous progress. Recently, the comparative analysis of geodetic observation SLR can be made by the development of GRACE and other time-variable gravity measurements. In this study, $C_{20}$ time series changes in the value of comparative analysis was got by GRACE monthly Gravity filed model (CSR RL04) for the period April 2002 to May 2008. And comparative analysis the harmonic coefficients of $C_{20}$ was obtained from SLR observations. Signal analysis for two time-series data was made by wavelet transform, CWT(continuous wavelet transform), XWT(cross wavelet transform) and WTC(wavelet coherence) methods. The results indicate that GRACE and SLR values for $C_{20}$ had both decreasing trend, as well as SLR data represent the annual frequencies, and GRACE was semiannual variations. In addition, the results of GRACE and SLR had a strong correlation with the XWT and WTC in an annual cycle.

자가용 이용실태 조사 결과(2002년 에너지 총조사)

  • Korea Petroleum Association
    • Korea Petroleum Association Journal
    • /
    • no.5 s.236
    • /
    • pp.60-65
    • /
    • 2003
  • 에너지총조사는 우리나라 전 산업(가구 및 자가용승용차 포함)에 대한 에너지원별 소비구조 파악 및 행태 분석을 위하여 매 3년마다 산업자원부 주관 하에 에너지경제연구원에서 실시하고 있다. 금번 잠정 결과는 2002년 8월을 기준으로 실시된 '2002 에너지총조사' 자가용 승용차부문 중 승용일반형에 대한 조사결과를 1993년부터 시계열로 비교한 결과이다.

  • PDF

Resampling Methods on Frequency Domains for Time Series (시계열분석을 위한 주파수 공간상에서의 재표집 기법)

  • Yeo In-Kwon;Yoon Wha-Hyung;Cho Sin-Sup
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.121-134
    • /
    • 2006
  • This paper presents the resampling method for time series data in the frequency domain obtained by using discrete cosine transforms(DCT) The advantage of the proposed method is to generate bootstrap samples in time domain comparing with existing bootstrapping method. When time series are stationary, statistical properties of DCT coefficients are investigated and provide the verification of the proposed procedure.

Prediction of the interest spread using VAR model (벡터자기회귀모형에 의한 금리스프레드의 예측)

  • Kim, Junhong;Jin, Dalae;Lee, Jisun;Kim, Suji;Son, Young Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2012
  • In this paper, we predicted the interest spread using the VAR (vector autoregressive) model. Variables used in the VAR model were selected among 56 domestic and foreign macroeconomic time series through crosscorrelation and Granger causality test. The performance of the VAR model was compared with the univariate time series model, AR (autoregressive) model, in view of MAPE (mean absolute percentage error) and RMSE (root mean square error) of forecasts for the last twelve months.

A study on unequal probability sampling over two successive occasions in time series (시계열 계속 표본조사에서 불균등확률 추출법 연구)

  • 박홍래;이계오
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.145-162
    • /
    • 1993
  • We review sampling schemes on successive occasions with partial replacement of units and propose a Rao-Hartley-Cochran(RHC) type's sampling scheme over two successive occasions with probability proportionate to observations on the previous occasion. For comparison of the reviewed and proposed sampling schemes, optimal estimator of population mean on second occasion and its variance are derived. The relative efficiency of the proposed sampling scheme is compared with other equal and unequal probability sampling scheme by theoretical and numerical simulation study. For simulation study, three artificial populations are generated by a time series model. It is observed that RHC type's sampling scheme has small variance and deviation in general.

  • PDF

Development and application of dam inflow prediction method using Bayesian theory (베이지안 이론을 활용한 댐 유입량 예측기법 개발 및 적용)

  • Kim, Seon-Ho;So, Jae-Min;Kang, Shin-Uk;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.87-87
    • /
    • 2017
  • 최근 이상기후로 인해 국내 가뭄피해가 증가하고 있는 추세이며, 미래 가뭄의 심도 및 지속시간은 증가할 것으로 예측되고 있다. 특히 우리나라는 용수공급의 56.5%를 댐에 의존하여 댐 유역의 가뭄은 생 공 농업용수 공급제한 등의 광범위한 피해를 발생시킬 수 있다. 다만 가뭄은 홍수와 달리 진행속도가 비교적 느리기 때문에 사전에 정확한 댐 유입량 예측이 가능하다면, 용수공급량 조정을 통해 피해를 최소화할 수 있다. 국내에서는 댐 유입량 예측에 ESP (Ensemble Streamflow Prediction) 기법을 활용하고 있으며, ESP 기법은 과거 기상자료를 기반으로 미래를 예측하기 때문에 기상자료, 초기수문조건, 매개변수 등에 불확실성을 가지고 있다. 본 연구에서는 베이지안 이론을 이용하여 댐 예측유입량의 정확도 향상기법을 개발하고 예측성을 평가하고자 하며, 강우유출모델은 ABCD를 활용하였다. 대상유역은 국내의 대표 다목적댐인 충주댐 유역을 선정하였으며, 기상자료는 기상청, 국토교통부 및 한국수자원공사의 지점자료를 수집하였다. 예측성 평가기법으로는 도시적 분석방법인 시계열 분석, 통계적 분석방법인 Skill Score (SS)를 활용하였다. 시계열 분석 결과 ESP 댐 예측유입량(ESP)은 매년 월별 전망값의 큰 차이가 없었으며, 다우년 및 과우년의 예측성이 떨어지는 것으로 나타났다. 베이지안 기반의 댐 예측유입량(BAYES-ESP)는 ESP의 과소모의하는 경향을 보정하였으며, 다우년에 예측성이 향상되었다. 월별 평균 댐 관측유입량과 ESP, BAYES-ESP의 SS 비교분석 결과 ESP는 유입량 값이 적은 1, 2, 3월에 SS가 양의 값을 가졌으며, 이외의 월에는 음의 값으로 나타났다. BAYES-ESP는 ESP와 관측값이 비교적 선형관계를 나타내는 1, 2, 3월에 ESP의 예측성을 개선시키는 것으로 나타났다. ESP 기법은 강수량의 월별, 계절별 변동성이 큰 우리나라에 적용하기에는 예측성의 한계가 있었으며, 이를 개선한 BAYES-ESP 기법은 댐 유입량 예측 연구에 가치가 있는 것으로 판단된다.

  • PDF

Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks (Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측)

  • Han, Min-Soo;Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.50-53
    • /
    • 2017
  • Not only growth of importance to understanding economic trends, but also the prediction to overcome the uncertainty is coming up for long-term maritime recession. This paper discussed about the prediction of BDI with artificial neural networks (ANN). ANN is one of emerging applications that can be the finest solution to the knotty problems that may not easy to achieve by humankind. Proposed a prediction by implementing neural networks that have recurrent architecture which are a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). And for the reason of comparison, trained Multi Layer Perceptron (MLP) from 2009.04.01 to 2017.07.31. Also made a comparison with conventional statistics, prediction tools; ARIMA. As a result, recurrent net, especially RNN outperformed and also could discover the applicability of LSTM to specific time-series (BDI).

  • PDF

Probabilistic Reservoir Inflow Forecast Using Nonparametric Methods (비모수적 기법에 의한 확률론적 저수지 유입량 예측)

  • Lee, Han-Goo;Kim, Sun-Gi;Cho, Yong-Hyon;Chong, Koo-Yol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • 추계학적 시계열 분석은 크게 수문자료의 장기간 합성과 실시간 예측으로 구분해 볼 수 있다. 장기간 합성은 주로 수문자료의 추계적 특성을 반영한 수자원 시스템의 운영율 개발에 이용되어 왔다. 반면에 실시간 예측은 수자원 시스템의 순응적(adaptive) 관리에 적용되고 있다. 두 개념의 차이로 전자는 시계열 자료를 합성하여 발생 가능한 모든 수문조합을 얻고자 하는 것이라면 후자는 전 시간의 수문량을 조건으로 하는 다음 시간의 값을 순응적으로 예측하는 것이라 할 수 있다. 수문자료의 합성과 예측에는 크게 결정론적, 확률론적 방법의 두 가지 대별될 수 있다. 결정론적 모델링 방법에는 인공신경망이나 Fuzzy 기법 등을 이용할 수 있으며, 확률론적 방법에는 ARMAX 등의 모수적 기법과 k-NN(k-nearest neighbor bootstrap resampling), KDE(kernel density estimates), 추계학적 인공신경망 등의 비모수적 기법으로 분류할 수 있다. 본 연구에서는 대표적 비모수적 기법인 k-NN를 이용하여 충주댐을 대상으로 월 및 일 유입량 자료의 예측 정도를 살펴보았다. 전 시간 관측치를 조건으로 하는 다음 시간의 조건부 확률분포를 구하여 평균값을 계산한 후 관측치와 비교함으로써 모형의 정도를 살펴보았다. 그리고 실시간 저수지 운영에 이 기법의 활용성과 장단점도 살펴보았다. 모형개발 절차로 모형의 보정을 거쳐 검증을 실시하였다. 결론적으로 월 및 일 유입량 예측에 k-NN 기법이 실무적으로 적용될 수 있었으며, 장점으로는 k-NN 기법이 다른 기법보다 모델링 절차가 비교적 쉬워 저수지 운영 최적화 등 타 시스템과의 연계에 수월함이 인식되었다.

  • PDF