• 제목/요약/키워드: 시계열 및 군집 분석

검색결과 48건 처리시간 0.032초

시간단위 전력사용량 시계열 패턴의 군집 및 분류분석 (Clustering and classification to characterize daily electricity demand)

  • 박다인;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권2호
    • /
    • pp.395-406
    • /
    • 2017
  • 전력 공급 시스템의 효율적인 운영을 위해 전력수요예측은 필수적이다. 본 연구에서는 군집분석과 분류분석을 이용하여 일 단위 시간별 전력수요량 시계열 패턴의 유형을 살펴보고자 한다. 전력거래소에서 수집된 2008년 1월 1일부터 2012년 12월 31일까지의 일 단위 시간별 전력수요량 데이터를 추세성분, 계절성분, 오차 성분으로 구성된 시계열 자료로 변환하여 사용하였다. 추세성분을 제거한 시계열 자료의 패턴을 구분하기 위한 군집 분석방법은 k-평균 군집분석 (k-means), 가우시안혼합모델 혼합 모델 군집분석 (Gaussian mixture model), 함수적 군집분석 (functional clustering)을 고려하였다. 주성분분석을 통해 24시간 자료를 2개의 요인로 축소한 후 k-평균 군집분석과 가우시안 혼합 모델, 함수적 군집분석을 수행하였다. 군집분석 결과를 토대로 2008년부터 2011년까지 총 4년간 데이터를 4가지 분류분석방법인 의사결정나무, RF (random forest), Naive bayes, SVM (support vector machine)을 통해 훈련시켜 2012년 군집을 예측하였다. 분석 결과 가우시안 혼합 분포기반 군집분석과 RF를 이용한 군집예측 결과의 성능이 가장 우수하였다.

제조 시계열 데이터를 위한 진화 연산 기반의 하이브리드 클러스터링 기법 (Evolutionary Computation-based Hybird Clustring Technique for Manufacuring Time Series Data)

  • 오상헌;안창욱
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.23-30
    • /
    • 2021
  • 제조 시계열 데이터 클러스터링 기법은 제조 대용량 데이터 기반 군집화를 통한 설비 및 공정 이상 탐지 분류를 위한 중요한 솔루션이지만 기존 정적 데이터 대상 클러스터링 기법을 시계열 데이터에 적용함에 있어 낮은 정확도를 가지는 단점이 있다. 본 논문에서는 진화 연산 기반 시계열 군집 분석 접근 방식을 제시하여 기존 클러스터링 기술에 대한 정합성 향상하고자 한다. 이를 위하여 먼저 제조 공정 결과 이미지 형상을 선형 스캐닝을 활용하여 1차원 시계열 데이터로 변환하고 해당 변환 데이터 대상으로 Pearson 거리 매트릭을 기반으로 계층적 군집 분석 및 분할 군집 분석에 대한 최적 하위클러스터를 도출한다. 해당 최적 하위클러스터 대상 유전 알고리즘을 활용하여 유사도가 최소화되는 최적의 군집 조합을 도출한다. 그리고 실제 제조 과정 이미지 대상으로 기존 클러스터링 기법과 성능 비교를 통하여 제안된 클러스터링 기법의 성능 우수성을 검증한다.

이상탐지 기반의 효율적인 시계열 유사도 측정 및 순위화 (Efficient Time-Series Similarity Measurement and Ranking Based on Anomaly Detection)

  • 최지현;안현
    • 인터넷정보학회논문지
    • /
    • 제25권2호
    • /
    • pp.39-47
    • /
    • 2024
  • 시계열 분석은 시간 순서로 정렬된 데이터로부터 다양한 정보와 인사이트를 발견하기 위한 방법으로 많은 조직에서 비즈니스 문제 해결을 위해 적용하고 있다. 그중에서 시계열 유사도 측정은 패턴이 비슷한 시계열들을 식별하기 위한 단계로서 시계열 검색 및 군집화와 같은 시계열 분석 응용에서 매우 중요하다. 본 연구에서는 전체 시계열이 아닌 이상치들을 중심으로 시계열 유사도 측정을 계산 효율적으로 수행하는 방법을 제안한다. 이와 관련하여 이상탐지를 통해 추출된 서브시퀀스 집합에 대한 유사도 측정 결과와 시계열 전체에 대한 유사도 측정 결과 사이의 순위 상관관계를 측정 및 분석하여 제안 방법을 검증한다. 실험 결과로써, 주식 종목 시계열 데이터에 이상치 비율 10% 을 적용한 유사도 측정으로부터 최대 0.9 이상의 스피어만 순위 상관계수를 확인하였다. 결론적으로 제안 방법을 통해 시계열 유사도 측정에 소요되는 계산량을 유의미하게 절감하는 동시에 신뢰 가능한 시계열 검색 및 군집화 결과를 기대할 수 있다.

강우 관측소별 군집 및 경향성 분석을 활용한 효율적인 수자원 관리 (Efficient water resource management using cluster and trend analysis for each rainfall station)

  • 왕원준;신성철;강유진;이승민;김수전;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.115-115
    • /
    • 2023
  • 최근 기후변화의 영향으로 국내에서 강우량과 유출량의 변동성이 커짐에 따라 효율적으로 수자원을 관리하는 데 어려움을 겪고 있다. 따라서 수자원 관리 측면에서 강우관측소를 대상으로 군집 분석과 경향성 분석을 통해 사전에 강우 시계열 자료의 추세와 특징을 파악하면 용수 공급과 가뭄 및 홍수피해 저감 등에 효과적으로 대처할 수 있다. 본 연구에서는 2000년부터 2019년까지낙동강 유역의 64개 강우관측소를 대상으로 동질성 검정과 수정 Mann-Kendall (MK) 검정을 적용하여 강우 시계열 자료의 월별, 계절별, 연도별 경향성 분석을 수행하였다. 또한, 경향성이 나타나는 관측소별 세부지표(연평균 강우량, 표고 등)를 기준으로 K-means 군집 분석을 수행하여 군집별 강우 특성을 파악하고자 하였다. 분석을 수행한 결과 경향성 분석에선 3월, 4월, 11월, 12월, 봄 및 가을에는 강우량이 증가 추세를 보였고 1월, 5~9월, 여름과 연도별로는 감소 추세가 나타났다. 또한 군집 분석에서는 Silhouette analysis를 기반으로 최적의 군집 개수를 3개로 설정했을 때 군집별 강우 세부지표의 통계값이 관측소별 표고에 비례하는 특징이 나타났다. 연구를 통해 도출된 군집별 강우 특성과 관측소별 경향성 분석결과를 연계하면 강우량의 변동성을 고려한 효율적인 수자원 관리 방안을 마련하는 데 활용할 수 있을 것으로 판단된다.

  • PDF

시계열자료의 효율적 군집분석을 위한 구간특징화와 계층적 베이지안 기법의 융합 (A Fusion of the Period Characterized and Hierarchical Bayesian Techniques for Efficient Cluster Analysis of Time Series Data)

  • 정영애;전진호
    • 디지털융복합연구
    • /
    • 제13권7호
    • /
    • pp.169-175
    • /
    • 2015
  • 주가지표처럼 동적이며 시간흐름을 따르는 시계열자료들을 이해하는 효과적인 방법은 주어진 시계열자료들에 대하여 모델을 결정함으로서 이해하는 것이 좋다. 주어진 자료들에 대한 모델 결정과정은 수집되어진 대용량 시계열자료 전체를 한 번에 다 살펴보는 것보다 자료를 특정의 중요한 몇 개의 하위그룹으로 군집화하여 각 군집별 모델결정을 통해 자료 전체를 이해하는 것이 효율적이다. 본 연구에서는 주어진 시계열자료들에 대하여 하위그룹으로의 효율적 군집화 과정 그리고 각 군집별 모델결정의 두 과정 중 첫 번째 과정인 하위집단으로 군집화 과정에 자료의 구간특징화 기법과 휴리스틱 베이지안기법의 융합을 이용하여 시간 및 계산비용을 감소시킬 수 있는 기법을 제안하였으며 실제적인 주가지표를 이용한 실험을 통해 제안하는 기법의 유효성을 확인하였다.

키넥트 센서를 이용한 팔 제스처 인식 시스템의 설계 (Design of an Arm Gesture Recognition System using Kinect Sensor)

  • 허세경;신예슬;김혜숙;김인철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 춘계학술발표대회
    • /
    • pp.250-253
    • /
    • 2013
  • 최근 카메라 영상을 이용한 제스처 인식 관련 연구가 활발히 진행되고 있다. 카메라 영상을 이용한 제스처 인식에서 많이 사용되는 학습 알고리즘에는 확률 그래프 모델인 HMM과 CRF 등이 있다. 이 학습 알고리즘들은 다차원의 연속된 실수 데이터를 가지고 모델을 학습하면 계산량이 많아진다. 본 논문에서는 팔 관절 위치 데이터를 k-평균 군집화 과정을 거쳐 1차원의 시계열 데이터로 변환 후, 제스처별로 HMM 모델을 학습하는 방법을 제안한다. 키넥트 센서를 통해 얻은 팔 관절 위치 데이터에 k-평균 군집화를 적용하여 1차원 시계열 데이터를 생성하고, 이를 HMM의 학습 및 인식에 사용한다. 본 논문에서 제안하는 방법의 성능을 분석하기 위하여, 다른 시계열 학습 알고리즘인 AP+DTW를 이용한 방법과의 비교 실험을 포함해 다양한 실험들을 수행하였다.

시계열 군집을 활용한 부산시 감염병 지원 정책 방향: COVID-19 사례를 중심으로 (A Direction of Politic Support for Infectious Disease in Busan Using Time-series Clustering: Focusing on COVID-19 Cases)

  • 권현호;김도희;박찬호;이은주;조기행;배혜림
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.125-138
    • /
    • 2020
  • COVID-19 확산 이후 국가 위기경보 단계가 최고 수준인 4단계로 올라갔다. 우리나라의 경우, 대구에서 발생한 집단 감염으로 인하여 경북지역에서 코로나 확진자가 급증하면서 전국적으로 확산되어 갔다. 코로나 확산에 따라 정부 및 각 지자체에서는 시민들의 불안감과 경제적 어려움을 해소하고자 지원 대책을 마련하였다. 부산시도 시민들의 정책 수요를 파악한 결과, 공공요금 인하, 기본소득 지급, 소상공인 경영지원 강화 등의 정책에 대한 수요가 다수를 차지하였다. 시민들의 수요를 바탕으로 본 연구에서는 코로나 전·후의 데이터를 패턴 분석하여 부산시 구/군별 업종별 시계열 군집화를 통해 경제적 지원에 있어 선제적 관점을 제공한다. 또한 향후 전염병과 재난 발생 시 예방 및 정책 방향을 설정하는 데 도움을 줄 수 있을 것이다.

토픽모델링과 시계열 회귀분석을 활용한 헬스케어 분야의 뉴스 빅데이터 분석 연구 (Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis)

  • 김은정;장석권;이상용
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.163-177
    • /
    • 2023
  • 본 연구는 디지털 헬스케어 산업 활성화를 위한 정책적 접근으로서, 주요 의제 도출 및 정책적 시사점을 제시하는데 목적이 있다. 본 연구에서는 10년(2013년~2022년) 간의 헬스케어와 관련된 뉴스 빅데이터 총 91,873건을 수집하여 토픽모델링 분석, 다차원척도 분석 및 시계열 회귀분석을 수행하였다. 토픽모델링 분석 및 다차원척도법을 통해 총 20개의 토픽을 도출하여 2차원선상에 토픽들의 군집 형태를 파악하였고, 시계열 회귀분석을 통해, 상승 추세를 나타내는 4개의 Hot topic(건강관리, 바이오제약, 기업매출·전망, 정부·정책)과 하향 추세를 나타내는 3개의 Cold topic(스마트기기, 주식·투자, 도시·건설)을 도출되었다. 본 연구의 결과는 우리나라 정책을 수립하는 정부 기관에 중요한 기초 자료로 활용될 수 있을 것이다.

낙동강 하류 하천구조물 건설 전후의 충적층 지하수위 시계열 특성 비교 (Comparison of Time Series of Alluvial Groundwater Levels before and after Barrage Construction on the Lower Nakdong River)

  • 김규범;차은지;정해근;신경희
    • 지질공학
    • /
    • 제23권2호
    • /
    • pp.105-115
    • /
    • 2013
  • 보의 건설 및 하천 단면의 증가는 하천 수위 상승과 호우기 유출량의 증가를 가져왔다. 낙동강 중하류에 설치된 23개의 지하수 관측망 지하수위 자료를 사용하여 보 담수 전후의 지하수위 시계열 변동 유형의 변화를 분석하였다. 월평균 지하수위 자료를 토대로 담수 전후의 지하수위를 비교한 결과 보의 직상류 주변 지역에서 지하수위 변동이 가장 크게 나타났으며, 8월의 경우 하천 수위 조절 효과로 월평균 지하수위가 0.1 m 감소하였으나 10월에는 1.3 m 상승한 것으로 나타났다. 지하수위 시계열 자료와 하천 수위 자료를 사용하여 군집분석을 실시한 결과, 담수 이전에는 7개 지하수 관측망의 자료가 하천 수위와 유사성 거리가 가까운 그룹이었으나, 담수 이후에는 14개로 증가하여 하천 수위와 유사한 그룹의 범위가 넓어졌다. 지하수위 시계열에 대한 주성분분석 결과, 담수 이전에는 하천 변동성을 대표하는 주성분(주성분 1과 주성분 2)의 설명력이 총 82%이었으나, 담수 이후에는 하천 변동성을 설명하는 주성분(주성분 1)의 설명력이 45%로 줄어들어 지하수위 자료를 설명하는데 하천 요인의 기여도가 줄고 인위적인 양수 등과 같은 기타 요인의 기여도가 높아졌다. 이와 같이 변화되는 수문 환경에 대비하여 지속적인 조사 및 관측이 필요하며, 하천 주변에서는 지표수와 연계되는 지하수 관리 정책이 수립될 필요가 있다.

정보이론 관점에서 본 서울시 지역구간의 미세먼지 영향력 재조명 (A Reexamination on the Influence of Fine-particle between Districts in Seoul from the Perspective of Information Theory)

  • 이재구;이태훈;윤성로
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.109-114
    • /
    • 2015
  • 본 논문에서는 서울시에 속하는 25개의 지역구로부터 측정된 미세먼지 시계열(time series) 정보의 상관도를 정보이론(information theory)의 엔트로피(entropy)로 정량화하고, 이를 그래프로 표현하는 서울시 지역구 미세먼지 전이 모델을 만들어 지역별 유사성과 영향력을 분석하는 방법을 제안한다. 먼저, 각각의 미세먼지 농도 시계열을 가지는 지역구의 모든 쌍마다 전이 엔트로피(transfer entropy)를 계산하여 그래프의 노드간 연결 강도를 구한다. 이 그래프에 전통적인 커뮤니티 검출(community detection) 기법인 모듈성 기반 군집화(on modularity-based clustering) 알고리즘을 적용하여 전체 지역구들에 생성되는 커뮤니티를 검출하였다. 이를 통해 지역적인 근접 정도가 높은 지역과 차량 이동이 많은 지역 간의 미세 먼지 전이성이 높은 것을 확인하였으며, 더불어 제안된 방법은 기존 미세먼지의 기상모델 분석과 다른 정보이론 관점에서의 새로운 미세먼지 분석 방법의 고찰 및 향상된 미세먼지 분석 자료 생성에 활용될 것으로 기대된다.