• Title/Summary/Keyword: 시계열분석방법

Search Result 803, Processing Time 0.033 seconds

Development of Weather Information System for Water Resources Management of Guem River (금강유역 수자원 운영을 위한 기상정보제공시스템 구축)

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1007-1012
    • /
    • 2008
  • 유역통합수자원관리의 시작은 기상예측정보의 제공으로부터 시작된다. 하지만, 기상예측정보는 단기, 중기, 장기로 구분되며, 제공되는 정보가 수자원 운영에 필요한 정보와 시간적으로나 공간적으로 차이가 나며, 가공에 많은 전문가들의 노력이 필요하여 실무에서의 적용에 많은 어려움이 따른다. 따라서 본 연구에서는 이러한 문제들을 해결하고 용이하게 수자원 운영자에게 필요한 기상정보를 적절한 형태의 가공을 통하여 자동적으로 제공해 주는데 그 목적이 있다. 이러한 시스템의 구축을 통해 향후 수자원 운영에 있어 필수적인 의사결정 정보를 제공해 주어 수자원의 이용효율을 높이고자 한다. 구축된 시스템은 금강 유역에 대해 소유역단위로 장기 유출의 입력자료인 일단위 예측 강수를 30일간 제공하도록 시스템을 구축하였다. 단기(1일$\sim$2일)에는 RDAPS의 모의 결과인 Grib파일을 자동 추출하여 예측 강수를 제공한다. 1일에 두 번 모의되는 RDAPS의 결과를 일단위로 제공하기 위해 여러 가지 case별 분석을 실시하여 가장 적합한 기법을 이용하여 일단위 시계열을 구축하는 시스템을 설계하였다. 중기(3일$\sim$10일)에는 GDAPS 결과인 Grib파일을 자동 추출하여 유역단위 시계열을 구축한 뒤 과거 자료를 이용한 연 평균 자료를 이용하여 가중치를 곱하여 시계열을 구축하였다. 장기(11일$\sim$30일) 시계열의 구축을 위해서는 단기 및 중기 예측 시계열을 이용하여 과거 시계열 자료와의 통계적 비교 분석을 이용하여 유사 시계열을 추출한 후 과거 자료에 대한 평균값과 기상 전망을 이용하여 가중치를 부여하는 방법 등을 이용하여 시스템을 구축하였다. 본 시스템은 한국수자원공사에서 운영 중인 RRFS모형의 입력 자료를 자동 생성할 수 있는 기능을 제공하도록 설계되었다. 이러한 시스템의 구축을 통해 기상정보를 다루는데 익숙하지 않은 수자원 운영자들에게 비교적 용이하게 유역단위 기상예측 정보를 추출하는데 큰 도움이 될 것으로 기대한다.

  • PDF

Neural network AR model with ETS inputs (지수평활법을 외생변수로 사용하는 자기회귀 신경망 모형)

  • Minjae Kim;Byeongchan Seong
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.297-309
    • /
    • 2024
  • This paper evaluates the performance of the neural network autoregressive model combined with an exponential smoothing model, called the NNARX+ETS model. The combined model utilizes the components of ETS as exogenous variables for NNARX, to forecast time series data using artificial neural networks. The main idea is to enhance the performance of NNAR using only lags of the original time series data, by combining traditional time series analysis methods with the neural networks through NNARX. We employ two real data for performance evaluation and compare the NNARX+ETS with NNAR and traditional time series analysis methods such as ETS and ARIMA (autoregressive integrated moving average) models.

상선해기사 수급 예측과 인력부족 진단 및 대응 분석

  • 이정경;신용존
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.269-271
    • /
    • 2022
  • 이 연구는 상선 해기사 인력의 수요를 단순평균법과 추세분석 및 시계열분석을 통혜 예측하고, 예측치와 실적치들을 비교하여 수요 예측방법들의 예측 정확도를 평가하였으며, 마이코프 분석을 활용하여 직급별로 인력구성의 변화요인을 고려하여 공급을 예측하고 인력부족을 진단하였다. 그리고 자율운항선 도입과 현실적인 공급확대 방안 실행이 부족인력 감소에 미치는 영향을 분석하여 해기사 인력 수급 대책의 타당성과 효과를 평가하였다.

  • PDF

The methods of forecasting for the number of student based on promotion proportion (학년진급률에 따른 학생수 예측방법)

  • Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.857-867
    • /
    • 2009
  • The purpose of this paper is to suggest the methods of forecasting for the number of the elementary, middle and high-school student based on the proportion of promotion until 2026 year. The suggested methods are the proportion of promotion, mov baseverage, Holt-W bters model, SARIMA, regression fit. As the result, the abilities of forecasting by the method of moving average are better than those of other methods.

  • PDF

Box-Jenkins 예측기법 소개

  • 박성주;전태준
    • Korean Management Science Review
    • /
    • v.1
    • /
    • pp.68-80
    • /
    • 1984
  • Box-Jenkins 시계열 분석법은 변수에 관한 정보가 부족하거나 너무 많은 변수가 영향을 미치고 있는 경우에도 과학적인 예측치를 구할 수 있는 단기예측 방법이다. Box-Jenkins 모형은 자동회귀 모형(Autoregressive Model), 이동평균 모형 (Moving average Model), 계절적 시계열 모형을 통합한 일반적인 모형이기 때문에 특별한 불안정성을 보이지 않는 경우에는 모두 모형화 할 수 있으며, 모형에 관계된 계수의 수를 최소화 하면서 만족스러운 모형을 찾을 수 있다. Box-Jenkins예측방법은 모형선정, 매개변수추정, 적합성 검정의 3단계를 반복으로 수행함으로써 최적모형에 이르게 하게 하고 있기 때문에 최소의 가능한 모형으로부터 시작하여 부적당한 부분을 제거시켜 나감으로써 시행착오의 과정을 최소화 할 수 있다. 일반 사용자가 Box-Jenkins 시계열 분석법을 쉽게 사용할 수 있도록 Box-Jenkins Package가 개발되었으며 여기서는 KAIST 전산 개발 센터에 설치된 Package를 소개하고 그 사용예를 보였다.

  • PDF

Random Walk Test on Hedge Ratios for Stock and Futures (헤지비율의 시계열 안정성 연구)

  • Seol, Byungmoon
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.9 no.2
    • /
    • pp.15-21
    • /
    • 2014
  • The long memory properties of the hedge ratio for stock and futures have not been systematically investigated by the extant literature. To investigate hedge ratio' long memory, this paper employs a data set including KOSPI200 and S&P500. Coakley, Dollery, and Kellard(2008) employ a data set including a stock index and commodities foreign exchange, and suggested the S&P500 to be a fractionally integrated process. This paper firstly estimates hedge ratios with two dynamic models, BEKK(Bollerslev, Engle, Kroner, and Kraft) and diagonal-BEKK, and tests the long memory of hedge ratios with Geweke and Porter-Hudak(1983)(henceforth GPH) and Lo's modified rescaled adjusted range test by Lo(1991). In empirical results, two hedge ratios based on KOSPI200 and S&P500 show considerably significant long memory behaviours. Thus, such results show the hedge ratios to be stationary and strongly reject the random walk hypothesis on hedge ratios, which violates the efficient market hypothesis.

  • PDF

Categorical time series clustering: Case study of Korean pro-baseball data (범주형 시계열 자료의 군집화: 프로야구 자료의 사례 연구)

  • Pak, Ro Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.621-627
    • /
    • 2016
  • A certain professional baseball team tends to be very weak against another particular team. For example, S team, the strongest team in Korea, is relatively weak to H team. In this paper, we carried out clustering the Korean baseball teams based on the records against the team S to investigate whether the pattern of the record of the team H is different from those of the other teams. The technique we have employed is 'time series clustering', or more specifically 'categorical time series clustering'. Three methods have been considered in this paper: (i) distance based method, (ii) genetic sequencing method and (iii) periodogram method. Each method has its own advantages and disadvantages to handle categorical time series, so that it is recommended to draw conclusion by considering the results from the above three methods altogether in a comprehensive manner.

Analysis of Employment Effect of the Minimum Wage Using Time Series Data (시계열 자료를 이용한 최저임금의 고용효과 분석)

  • Kang, Seungbok;Park, Cheolsung
    • Journal of Labour Economics
    • /
    • v.38 no.3
    • /
    • pp.1-22
    • /
    • 2015
  • We analyze the effect of the minimum wage on employment using time series data forr groups of individuals most affected by the minimum wage: young males (18 to 24 years old), young females (18 to 22 years old), old males (60 years and older) and old females (60 years and older). Our findings are as follows. First, a unit root test says that the variables like minimum wages and employments are non-stationary variables and they have cointegrational relations each other. It says that in this case, VEC is more suitable than OLS or VAR. Second, an increase of the minimum wage is found to have a weak but persistently negative effect on employment.

  • PDF

Clustering and classification to characterize daily electricity demand (시간단위 전력사용량 시계열 패턴의 군집 및 분류분석)

  • Park, Dain;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.395-406
    • /
    • 2017
  • The purpose of this study is to identify the pattern of daily electricity demand through clustering and classification. The hourly data was collected by KPS (Korea Power Exchange) between 2008 and 2012. The time trend was eliminated for conducting the pattern of daily electricity demand because electricity demand data is times series data. We have considered k-means clustering, Gaussian mixture model clustering, and functional clustering in order to find the optimal clustering method. The classification analysis was conducted to understand the relationship between external factors, day of the week, holiday, and weather. Data was divided into training data and test data. Training data consisted of external factors and clustered number between 2008 and 2011. Test data was daily data of external factors in 2012. Decision tree, random forest, Support vector machine, and Naive Bayes were used. As a result, Gaussian model based clustering and random forest showed the best prediction performance when the number of cluster was 8.

Estimation of the frequency coefficient for statistical probable maximum precipitation (PMP) using the weather data in Korea (우리나라 기상자료를 이용한 통계학적 가능최대강수량 빈도계수 산정)

  • Seo, Miru;Lee, Joohyung;Kim, Gyobeom;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.169-169
    • /
    • 2021
  • 통계학적 가능최대강수량방법은 가능최대강수량(Probable Maximum Precipitation, PMP) 측정 방법 중 하나로 WMO에서 통계학적인 PMP 추정 방법으로 Hershfield가 제안한 공식을 제시했다. Hershfield는 95,000개의 자료를 분석하였으며, 기본적으로 통계학적 PMP 추정방법의 빈도계수는 km = 15로 제안하였다. 그러나 강우 지속기간 및 연최대 시계열의 평균에 따라 값이 변하게 되며, Hershfield(1965)는 지속시간과 연최대 시계열의 평균에 따른 빈도계수가 5 ~ 20 사이의 값을 갖는다고 제안한 바 있다. Hershfield의 빈도계수는 미국 지역의 2,645개의 관측소의 95,000개의 강우 자료 이용했기 때문에 우리나라의 적용하였을 때 신뢰성에 문제가 있을수 있으며, 우리나라에서는 통계학적 방법보다는 수문기상학적 PMP 추정 방법을 주로 사용하고 있다. 따라서 본 연구에서는 우리나라의 기상 자료중에서 가장 많은 양을 가지는 지점 10개를 선정하여 빈도계수를 산정하였다. 빈도계수를 산정하기 위해서는 시계열로 구성된 강우 자료를 사용해야하며, 본 연구에서는 기상 자료의 이상치 검정을 진행하였으며, 경향성의 경우 정상성을 가지는 것으로 가정하였다. 확률 분포형은 극치분포인 GEV분포, Gumbel분포, Log-Gumbel분포, Weibull분포를 비교하여 가장 적절한 분포형을 선정하여 진행하였다. 최종적으로 얻은 빈도계수를 이용하여 구한 PMP값과 기존 Hershfield가 제시한 빈도계수 값 km = 15를 이용한 PMP값을 비교하여 차이를 분석하였으며, 그 적용성을 평가하였다.

  • PDF