최근 시계열 데이터를 이미지로 시각화하여 영상 인공지능 모델을 활용하는 방법이 주목받고 있다. 이 방법은 시계열 데이터를 이미지로 변환해, 합성곱 신경망(CNN: Convolutional Neural Network)과 같은 딥러닝(Deep Learning) 모델이 처리할 수 있도록 하여, 다양한 분야에서 그 효과가 입증되었지만, 플롯(plot) 크기가 모델 성능에 미치는 영향은 충분히 연구되지 않았다. 본 연구에서는 플롯 크기의 변화가 분류 정확도에 미치는 영향을 조사하기 위해 고양이, 까마귀 등의 자연의 소리를 플롯(plot)으로 시각화하고, 각 2,000개의 샘플로 구성된 5개의 클래스를 YOLO 모델을 통해 테스트하였다. 학습은 320x320 픽셀 크기의 플롯으로 진행되었으며, 테스트 데이터셋(Test dataset)은 112x112에서 640x640까지 6 종류의 픽셀 크기로 생성하였다. 그 결과, 테스트 데이터셋의 플롯 크기가 학습 데이터셋의 플롯 크기와 다를 수록 정밀도와 재현율이 감소하는 것을 확인했으며, 이는 시계열 시각화 연구에서 플롯 크기의 일관성이 중요함을 시사한다.
우리나라 갯벌은 우리나라의 하천 및 중국의 양자강과 황하 등으로부터 흘러 들어온 퇴적물이 밀물과 썰물에 의해 생성된 지형이며 오염정화, 어패류 생산 등에 있어 중요성이 아주 높다. 갯벌은 직접적인 접근이 어려워 지상측량이 힘들어 항공사진측량 기법을 활용하여 고해상도의 공간 정보를 얻는 것이 효율적이다. 본 연구에서는 비용 및 촬영 주기 등에 있어 단점이 있는 유인항공기 및 인공위성을 보완하기 위해 최근 산업적으로 주목받고 있는 드론을 활용하여 갯벌 지형 생성에 대한 연구를 수행하였다. 전라남도 영광 함평만 야월리 갯벌에 대해 GPS(Global Positioning System) 기준점 측량, 시간대별 드론 영상 획득, 번들 조정, 입체영상 처리를 통하여 DSM(Digital Surface Model) 및 정사영상을 생성하고 상호 좌표등록 등의 절차를 통해 단시간 내에 공간 정확성이 높은 갯벌의 시계열 공간 정보의 생성이 가능하였다.
스쿨존에서 교통사고를 사전에 예방하려고 노력하고 있다. 하지만, 스쿨존 내 교통사고는 계속 발생하고 있다. 운전자가 어린이보호구역 내 상황 정보를 미리 알 수 있으면, 사고를 줄일 수 있다. 본 논문에서는 스쿨존 내 사각지대를 없애는 카메라, 사전 교통정보를 수집할 수 있는 번호인식 카메라 시스템을 설계한다. 차량속도 및 보행자를 인식하는 LIDAR 시스템을 개선하여 설계한다. 카메라 및 LIDAR에서 인식된 보행자 및 차량 영상 정보를 수집하고 가공하여, 인공지능 시계열 분석 및 인공지능 알고리즘을 적용한다. 본 논문에서 제안한 딥러닝으로 학습된 인공지능 교통사고 예방 시스템은, 스쿨존 진입 전 차량 내 모바일 장치에 스쿨존의 정보를 운전자에게 전달하는 강제 푸시서비스를 한다. 그리고 LED 안내판에 스쿨존 교통정보를 알람으로 제공한다.
현대 사회는 갈수록 대형화되는 자연재해와 잦은 재난사고에 의한 인적·사회적 피해가 해마다 증가하고 있다. 난접근 지역이거나 접근 불능의 위험한 재난 현장을 인공위성이나 드론, 조사로봇과 같은 첨단 조사장비를 활용하여 신속하게 접근하고 유의미한 재난 정보를 적시적으로 수집·분석함으로써, 사전 예방·대비 대책 마련뿐만 아니라 적절한 재난 현장 대응 및 중장기적 복구 계획 수립 등 재난관리 전주기에 걸쳐 국민의 재산과 생명을 지킬 수 있는 중차대한 역할을 수행할 수 있다. 본 특별호에서는 지구 원격 관측 수단인 인공위성 기술뿐만 아니라 근거리 재난현장 관측센서가 탑재된 이동형 조사차량, 드론, 조사로봇 등 다양한 조사 플랫폼을 활용한 연구원의 재난관리 현업화 기술을 소개하고 있다. 주요 연구 성과로 구글어스 엔진을 활용한 수재해 피해 탐지와 중·장기적 시계열 관측, Sentinel-1 Synthetic Aperture Radar (SAR) 영상과 인공지능을 활용한 저수지 수체 탐지, 산불 재난시 주민 이동 패턴 분석과 재난안전 연구 데이터의 효율적인 통합 관리와 활용방안 연구성과를 소개하였다. 아울러, 접근 불능의 위험한 재난현장 조사시 드론, 조사로봇을 활용한 재난원인 과학조사 연구성과를 기술하였다.
인공위성은 시공간적으로 연속적인 지구환경 데이터를 제공하므로 위성영상을 이용하여 효율인 작물 수확량 예측이 가능하며, 딥러닝(deep learning)을 활용함으로써 더 높은 수준의 특징과 추상적인 개념 파악을 기대할 수 있다. 본 연구에서는 Landsat 8 위성 영상을 활용하여 다시기 영상 데이터를 이용하여 5대 수급 관리 채소인 배추와 무의 수확량을 예측하기 위한 딥러닝 모델을 개발하였다. 2015년부터 2020년까지 배추와 무의 생장시기인 6~9월 위성영상을 이용하여 강원도를 대상으로 배추와 무의 수확량 예측을 수행하였다. 본 연구에서는 수확량 모델의 입력자료로 Landsat 8 지표면 반사도 자료와 normalized difference vegetation index, enhanced vegetation index, lead area index, land surface temperature를 입력자료로 사용하였다. 본 연구에서는 기존 연구에서 개발된 모델을 기반으로 우리나라 작물과 입력데이터에 맞게 튜닝한 모델을 제안하였다. 위성영상 시계열 데이터를 이용하여 딥러닝 모델인 convolutional neural network (CNN)을 학습하여 수확량 예측을 진행하였다. Landsat 8은 16일 주기로 영상이 제공되지만 구름 등 기상의 영향으로 인해 특히 여름철에는 영상 취득에 어려움이 많다. 따라서 본 연구에서는 6~7월을 1구간, 8~9월을 2구간으로 나누어 수확량 예측을 수행하였다. 기존 머신러닝 모델과 참조 모델을 이용하여 수확량 예측을 수행하였으며, 모델링 성능을 비교했다. 제안한 모델의 경우 다른 모델과 비교했을 때, 높은 수확량 예측 성능을 나타내었다. Random forest (RF)의 경우 배추에서는 제안한 모델보다 좋은 예측 성능을 나타내었다. 이는 기존 연구 결과처럼 RF가 입력데이터의 물리적인 특성을 잘 반영하여 모델링 되었기 때문인 것으로 사료된다. 연도별 교차 검증 및 조기 예측을 통해 모델의 성능과 조기 예측 가능성을 평가하였다. Leave-one-out cross validation을 통해 분석한 결과 참고 모델을 제외하고는 두 모델에서는 유사한 예측 성능을 보여주었다. 2018년 데이터의 경우 모든 모델에서 가장 낮은 성능이 나타났는데, 2018년의 경우 폭염으로 인해 이는 다른 년도 데이터에서 학습되지 못해 수확량 예측에 영향을 준 것으로 생각되었다. 또한, 조기 예측 가능성을 확인한 결과, 무 수확량은 어느 정도 경향성을 나타냈지만 배추의 경우 조기 예측 가능성을 확인하지 못했다. 향후 연구에서는 데이터 형태에 따라 CNN의 구조를 조정해서 조기 예측 모델을 개발한다면 더 개선된 성능을 보일 것으로 생각된다. 본 연구 결과는 우리나라 밭 작물 수확량 예측을 위한 기초 연구로 활용될 수 있을 것으로 기대된다.
세계 제조업은 장기적인 경기침체, 노동 원가 및 원자재 가격 상승으로 성장 한계에 봉착하게 되었으며, 이에 대한 해결방안으로 ICT와 센서 기술을 바탕으로 제조업의 4차 산업혁명을 진행하고 있다. 이러한 흐름에 따라 화학 산업에서의 스마트공장보급 확산과 스마트제조 기술 향상을 위해, 본 논문은 스마트 제조혁신을 위한 보호필름 공정 제조데이터 활용모델의 설계를 제안한다. 보호필름 공정 중에서 원료 배합 및 교반, 압출, 그리고 검수 공정에 대해서 온도, 압력, 습도, 그리고 동영상 및 열화상의 제조 데이터를 획득한다. 또한 획득된 제조 데이터는 대용량 스토리지에 저장되며, AI 서비스에 의한 시계열 및 이미지 분석과 시각화가 진행된다.
콩은 세계 5대 식량작물 중 하나로 식물성 단백질의 주요 공급원이다. 작물 특성상 기후변화에 따라 곡물 생산량에 큰 영향을 받기 때문에 국립농업과학원에서는 콩 품종별 생장 분석을 통해 작물표현형 연구를 진행중이다. 콩 품종별 생장 분석을 위한 생장 과정 사진 촬영은 자동화된 시스템으로 이루어지지만 생장 상태를 확인, 기록, 분석하는 과정은 수작업으로 진행되고 있다. 본 논문에서는 이러한 과정을 자동화 할 수 있도록 콩 작물의 영상 데이터에서 콩잎 객체를 검출하는 YOLOv5s 모델과 검출된 콩잎의 전개 여부를 판단하는 합성곱 신경망(Convolution Neural Network; CNN) 모델을 설계, 학습하였다. 두 모델을 결합하고 검출된 콩잎의 좌표데이터로 층을 구분하는 알고리즘을 구현하여 콩 작물의 시계열 데이터를 입력하여 생장을 분석하는 프로그램을 개발하였고, 그 결과 콩 작물의 제2~3복엽까지 생장 시기를 판단할 수 있었다.
도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.
위성영상 기반 클로로필-a (chlorophyll-a) 농도는 전지구 기후변화 연구를 위해 장기간의 시계열 자료로 생산되고 있으며, 시간합성 또는 다종위성 자료의 병합(merging)을 통해 결측이 없는 자료의 생산이 요구된다. 그러나 한반도 주변 해역에서의 위성영상 기반 클로로필-a 농도와 관련된 연구는 단일 해색센서로 산출하여 계절적 특징을 평가하거나 연구해역에 적합한 알고리즘을 제시하는 연구가 주로 수행되었다. 본 연구에서는 한반도 주변 해역에서의 공간 커버리지가 높은 클로로필-a 농도 산출을 위해 정지궤도 해색센서 GOCI-II와 극궤도 센서(MODIS, VIIRS, OLCI)의 원격반사도(Remote Sensing Reflectance) 병합자료를 이용하였다. 연구결과 산출물의 공간 커버리지는 극궤도 해색센서 자료보다 약 30% 증가하여 구름으로 인한 결측을 보완하였다. 그리고 현장 관측자료와 함께 Ocean Colour Climate Change Initiative (OC-CCI)와 GlobColour에서 제공하는 전지구 클로로필-a 합성장 자료와의 비교를 통해 정확도를 정량적으로 제시하고자 하였다. 그러나 현장관측 자료의 절대적인 수 부족으로 유의미한 통계적 결과는 제시하지 못하였지만, 전지구 자료와의 비교 결과보다 과소 추정 경향을 확인하였다. 또한 적조와 같은 해양재해·재난 대응 목적의 활용성 평가를 위해 2013년 동해에서 발생한 대번성 사례와 정성적으로 비교하여 정지궤도 해색센서 단독 결과보다 OC-CCI와 유사하게 나타나는 것을 확인하였다. 본 연구를 통해 산출한 결과를 사용하여 향후 인공지능모델 기반의 예측 연구와 아노말리(anomaly) 활용 연구를 수행할 예정이며, 이를 통해 우리나라 연안해역에서 발생하는 클로로필-a 이벤트 모니터링에 유용하게 활용이 가능할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.