The main research problems in a mining frequent itemsets are reducing memory usage and processing time of the mining process, and most of the previous algorithms for finding frequent itemsets are based on an Apriori-property, and they are multi-scan algorithms. Moreover, their processing time are greatly increased as the length of a maximal frequent itemset. To overcome this drawback, another approaches had been actively proposed in previous researches to reduce the processing time. However, they are not efficient on a sparse .data set This paper proposed an efficient mining algorithm for finding frequent itemsets. A novel tree structure, called an $L_2$-tree, was proposed int, and an efficient mining algorithm of frequent itemsets using $L_2$-tree, called an $L_2$-traverse algorithm was also proposed. An $L_2$-tree is constructed from $L_2$, i.e., a set of frequent itemsets of size 2, and an $L_2$-traverse algorithm can find its mining result in a short time by traversing the $L_2$-tree once. To reduce the processing more, this paper also proposed an optimized algorithm $C_3$-traverse, which removes previously an itemset in $L_2$ not to be a frequent itemsets of size 3. Through various experiments, it was verified that the proposed algorithms were efficient in a sparse data set.
사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동객체의 위치 이력 데이터로부터 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들은 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나, 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 제약을 가진 공간 정보를 포함하는 패턴 탐사 문제에는 적용하기 어렵다. 따라서 이동 객체의 위치 이력 데이터들에 대한 시공간적 속성들을 동시에 고려하여 다양한 이동 패턴들 중 공간 제약을 만족하는 패턴들을 추출하기 위한 새로운 이동 패턴 탐사 기법이 요구된다. 이러한 패턴 탐사 기법의 개발을 위해서는 상세 수준의 위치 이력 데이터들을 공간 영역 정보 형태로 변환하는 위치 일반화 접근법이 필요하다. 이에 본 논문에서는 객체의 위치값과 공간 영역간의 위상 관계를 고려하여 이동 객체의 위치 속성에 대한 공간영역으로의 일반화 방법을 제안한다. 이동 객체의 상세 수준의 위치 정보에서는 의미있는 패턴을 찾기가 어렵기 때문에 데이터 전처리 과정을 통해 일반화된 데이터 집합을 형성함으로써 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.
KIPS Transactions on Software and Data Engineering
/
v.7
no.12
/
pp.461-468
/
2018
Developers spend a significant amount of time exploring and trying to understand source code to find a source location to modify. To reduce such time, existing studies have recommended the source location using statistical language model techniques. However, in these techniques, the recommendation does not occur if input data does not exactly match with learned data. In this paper, we propose a code location recommendation method using Recurrent Neural Networks and interaction histories, which does not have the above problem of the existing techniques. Our method achieved an average precision of 91% and an average recall of 71%, thereby reducing time for searching and exploring code more than the existing recommendation techniques.
Lee, Yonghyeok;Yi, Hojeong;Song, Minseok;Lee, Sang-Jin;Park, Sera
The Journal of Bigdata
/
v.1
no.2
/
pp.65-78
/
2016
In the rapid change of business environment, it is crucial that several companies with core competence cooperate together in order to deliver competitive products to the market faster. Thus a lot of companies are participating in supply chains and SCM (Supply Chain Management) become more important. To efficiently manage supply chains, the analysis of data from SCM systems is required. In this paper, we explain how to analyze SCM related data with process mining techniques. After discussing the data requirement for process mining, several process mining techniques for the data analysis are explained. To show the applicability of the techniques, we have performed a case study with a company in South Korea. The case study shows that process mining is useful tool to analyze SCM data. On specifically, an overall process, several performance measures, and social networks can be easily discovered and analyzed with the techniques.
Ubiquitous computing is a technique to provide users with appropriate services, collecting the context information in somewhere by attached sensor. An intelligent system needs to automatically update services according to the user's various circumstances. To do this, in this paper, we propose a design of context ontology, trigger rule for mining service pattern related to users activity and an active mining architecture integrating trigger system. The proposed system is a framework for active mining user activity and service pattern by considering the relation between user context and object based on trigger system.
Kim, Jong-Chan;Lee, Joon-Hyuck;Kim, Gab-Jo;Park, Sang-Sung;Jang, Dong-Sick
KIPS Transactions on Software and Data Engineering
/
v.3
no.9
/
pp.355-360
/
2014
Forecasting of emerging technology plays important roles in business strategy and R&D investment. There are various ways for technology forecasting including patent analysis. Qualitative analysis methods through experts' evaluations and opinions have been mainly used for technology forecasting using patents. However qualitative methods do not assure objectivity of analysis results and requires high cost and long time. To make up for the weaknesses, we are able to analyze patent data quantitatively and statistically by using text mining technique. In this paper, we suggest a new method of technology forecasting using text mining and ARIMA analysis.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.236-236
/
2021
최근 텍스트와 같은 비정형 데이터의 생성 속도가 급격하게 증가함에 따라, 이를 분석하기 위한 기술들의 필요성이 커지고 있다. 텍스트 마이닝은 자연어 처리기술을 사용하여 비정형 텍스트를 정형화하고, 문서에서 가치있는 정보를 획득할 수 있는 기법 중 하나이다. 텍스트 마이닝 기법은 일반적으로 각각의 분서별로 특정 용어의 사용 빈도를 나타내는 문서-용어 빈도행렬을 사용하여 용어의 중요도를 나타내고, 다양한 연구 분야에서 이를 활용하고 있다. 하지만, 문서-용어 빈도 행렬에서 나타내는 용어들의 빈도들은 문서들의 차별성과 그에 따른 용어들의 중요도를 나타내기 어렵기때문에, 용어 가중치를 적용하여 문서가 가지고 있는 특징을 분류하는 방법이 필수적이다. 다양한 용어 가중치를 적용하는 방법들이 개발되어 적용되고 있지만, 환경 분야에서는 용어 가중치 기법 적용에 따른 효율성 평가 연구가 미비한 상황이다. 또한, 환경 이슈 분석의 경우 단순히 문서들에 특징을 파악하고 주어진 문서들을 분류하기보다, 시간적 분포도에 따른 각 문서의 특징을 반영하는 것도 상대적으로 중요하다. 따라서, 본 연구에서는 텍스트 마이닝을 이용하여 2015-2020년의 서울지역 환경뉴스 데이터를 사용하여 환경 이슈 분석에 적합한 용어 가중치 기법들을 비교분석하였다. 용어 가중치 기법으로는 TF-IDF (Term frequency-inverse document frquency), BM25, TF-IGM (TF-inverse gravity moment), TF-IDF-ICSDF (TF-IDF-inverse classs space density frequency)를 적용하였다. 본 연구를 통해 환경문서 및 개체 분류에 대한 최적화된 용어 가중치 기법을 제시하고, 서울지역의 환경 이슈와 관련된 핵심어 추출정보를 제공하고자 한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.04a
/
pp.99-102
/
2007
웹 사용 마이닝은 사용자의 웹 이용 패턴에 대해 분석하여 정보를 찾아내는 분야이다. 사용자에 대한 분석은 웹을 통한 비즈니스의 근간이 되고 있다. 때문에 웹 마이닝 분야에서 주목받고 중요시 되는 기술이 되었다. 그러나 최근에는 공개된 기술의 취약점을 이용해 악의적으로 정보를 교란하는 일이 발생되고 있어 사회적으로 이슈가 되고 있다. 이러한 문제는 특히 단순한 페이지 뷰 횟수에 기반을 둔 정보 추출 방식에 주로 발생하고 있다. 따라서 본 논문에서는 이러한 추출 방식의 단순함을 줄이고 사용자의 정보를 더 반영하기 위하여 페이지 이용 시간과 페이지 내의 행동을 분석하여 콘텐츠의 질을 평가하는 방안을 제시한다. 구현 부분에는 사용자의 개인정보 침해 없이 사용자의 행동을 수집하기 위하여 최근 인기를 얻고 있는 Ajax 기술을 사용하였다. 그리고 실시간으로 웹 페이지에 대한 평가를 수행하기 위해 서버에 로그 필터 모듈을 추가하는 수집 기법을 제안하였다.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.293-296
/
2007
컴퓨터 게임 산업이 발전함에 따라 사용자의 흥미를 측정하거나 불법 소프트웨어 구별을 위해 사용자 분석에 관한 연구가 진행 중이다. 그 예로 최근에 사용자 분석을 통하여 게임 레벨 디자인을 하거나 이를 게임 균형에 이용하는 연구들이 있다. 본 논문은 개인적인 게임 환경에서 사용자의 적절한 게임 경험을 위해 시간열 데이터 마이닝 개념을 이용하여 게임 사용자 모델 분석을 제안한다. 본 논문은 사용자가 게임을 하고 있는 동안 의미 있는 사용자 행동을 저장하고 차원감소와 SOM을 이용하여 4가지 행동 유형으로 클러스터링하고 행동 유형에 따른 사용자를 분석한다.
최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 실제 응용분야에선 수집된 데이터는 시간이 지날수록 데이터의 양이 늘어나게 되고, 중복되는 속성과 잡음을 갖게 되어 마이닝 기법을 이용하는데 많은 시간과 비용이 소요된다. 또한 어느 속성이 중요한지 알 수 없어 중요한 속성이 중요하지 않은 속성에 의해 왜곡되거나 제대로 분석되지 않을 수 있다. 본 연구는 이러한 문제점들을 해결하기 위해 GHSOM을 이용한 계층적 신경망 군집화 방법을 제안한다. 제안하는 방법은 비리 군집의 개수를 정해줄 필요가 없고, 다양한 레벨의 군집들을 얻을 수 있는 계층적 군집화를 이루어낸다는 장점을 갖는다. 본 논문에서는 신경망 GHSOM의 구조와 특성에 대해 간략히 살펴보고 시스템 처리과정에 대해 설명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.