• Title/Summary/Keyword: 시간 데이타마이닝 모델

Search Result 3, Processing Time 0.017 seconds

Temporal Data Mining Framework (시간 데이타마이닝 프레임워크)

  • Lee, Jun-Uk;Lee, Yong-Jun;Ryu, Geun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.365-380
    • /
    • 2002
  • Temporal data mining, the incorporation of temporal semantics to existing data mining techniques, refers to a set of techniques for discovering implicit and useful temporal knowledge from large quantities of temporal data. Temporal knowledge, expressible in the form of rules, is knowledge with temporal semantics and relationships, such as cyclic pattern, calendric pattern, trends, etc. There are many examples of temporal data, including patient histories, purchaser histories, and web log that it can discover useful temporal knowledge from. Many studies on data mining have been pursued and some of them have involved issues of temporal data mining for discovering temporal knowledge from temporal data, such as sequential pattern, similar time sequence, cyclic and temporal association rules, etc. However, all of the works treated data in database at best as data series in chronological order and did not consider temporal semantics and temporal relationships containing data. In order to solve this problem, we propose a theoretical framework for temporal data mining. This paper surveys the work to date and explores the issues involved in temporal data mining. We then define a model for temporal data mining and suggest SQL-like mining language with ability to express the task of temporal mining and show architecture of temporal mining system.

Data Mining for Water Supply Forecasting (물 공급량 예측을 위한 데이터 마이닝 기법)

  • Shin, Gang-Wook;Kim, Youn-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.233-235
    • /
    • 2021
  • 본 논문에서는 물 공급량 예측을 위한 다양한 알고리즘 적용에 있어서 데이터 마이닝의 효용성을 검토하고자 하였다. 물 공급분야에 있어서, 물 이용 지역의 특성에 따라 공급량과 이용 시간이 매우 상이한 특성을 나타낸다. 물 이용 지역은 주택지역, 상업지역, 산업단지지역 등 다양한 형태로 분류할 수 있고, 이에 따라 물 이용 시간의 상이함에 따른 물 공급패턴이 일정하지 않게 된다. 특히, 주택지역과 상업지역이 복합적으로 이루어진 경우, 물 이용 단위인 블록 단위에서의 물 특성이 불규칙적인 패턴을 나타낸다. 따라서, 각 블록 단위 특성에 적합한 물 이용량을 예측하여 효율적 물 공급 방안을 마련할 필요가 있다. 또한, 물 이용량 데이터 중 이상 데이타 감지와 이상 데이터 보정을 통하여 물 이용량 예측의 정확도가 향상된다. 따라서, 블록 단위의 물 이용량에 대한 원시데이타의 효율적인 데이터 마이닝 방안이 요구된다. 본 연구에서는 물 공급지역의 특성에 따른 물 공급 패턴을 분석하고, 이에 적합한 데이터 마이닝 기법을 제시하고 비교 분석하였다. 제안된 데이터 마이닝 기법은 딥러닝 예측모델을 적용하여 적합성을 검증하고, 이를 물 공급량 예측알고리즘에 폭넓게 활용될 수 있음을 확인하였다.

  • PDF

Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems (침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류)

  • Shin, Moon-Sun;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.473-482
    • /
    • 2007
  • Network-based IDS(Intrusion Detection System) gathers network packet data and analyzes them into attack or normal. They raise alarm when possible intrusion happens. But they often output a large amount of low-level of incomplete alert information. Consequently, a large amount of incomplete alert information that can be unmanageable and also be mixed with false alerts can prevent intrusion response systems and security administrator from adequately understanding and analyzing the state of network security, and initiating appropriate response in a timely fashion. So it is important for the security administrator to reduce the redundancy of alerts, integrate and correlate security alerts, construct attack scenarios and present high-level aggregated information. False alarm rate is the ratio between the number of normal connections that are incorrectly misclassified as attacks and the total number of normal connections. In this paper we propose a false alarm classification model to reduce the false alarm rate using classification analysis of data mining techniques. The proposed model can classify the alarms from the intrusion detection systems into false alert or true attack. Our approach is useful to reduce false alerts and to improve the detection rate of network-based intrusion detection systems.