• 제목/요약/키워드: 시간 데이타마이닝 모델

검색결과 3건 처리시간 0.019초

시간 데이타마이닝 프레임워크 (Temporal Data Mining Framework)

  • 이준욱;이용준;류근호
    • 정보처리학회논문지D
    • /
    • 제9D권3호
    • /
    • pp.365-380
    • /
    • 2002
  • 시간 데이타마이닝은 기존 데이타마이닝에 시간 개념을 추가하여 "시간값을 가진 대용량 데이타로부터 이전에 잘 알려지지는 않았지만, 묵시적이고 잠재적으로 유용한 시간 지식을 탐사하는 기술"로 정의된다. 시간 지식이란 주기적 패턴, 캘린더 패턴, 경향 등과 같이 시간 의미와 시간 관계를 가진 지식을 말한다. 실세계에서는 환자의 병력, 상품 구매 이력, 웹 로그 등과 같은 다양한 시간 데이타가 존재하며 이로부터 여러 형태의 유용한 시간 지식을 찾아낼 수 있다. 데이타마이닝에 대한 연구가 진행되면서 순차 패턴, 유사 시계열 탐사, 주기적 연관규칙 탐사 등과 같이 시간 지식을 탐사하고자 하는 시간 데이타마이닝에 대한 부분적인 연구가 수행되었다. 그러나 기존 연구는 단순히 데이타의 발생 순서 및 유사한 패턴을 찾아내는데 중점을 두고 있어 데이타가 포함하고 있는 시간 의미와 시간 관계를 탐사하는데 부족하며, 시간 지식의 전체적인 측면보다는 연관 규칙과 같은 일부분만을 다루고 있다는 문제점을 가지고 있다. 따라서 이 논문에서는 시간 데이타마이닝에 대한 체계적인 연구를 위하여 시간 데이타마이닝에 대한 기존 연구 내용과 해결해야 할 문제점을 분석하고 이를 바탕으로 전체적인 프레임워크를 제시하였다. 또한 그 구현 방안 및 적용평가를 수행하였다. 프레임워크에서는 시간 데이타마이닝 모델을 제안하고, 이를 바탕으로 시간 데이타마이닝 질의어와 시간 지식을 탐사할 수 있는 시간 데이타마이닝 시스템을 설계하였다.

물 공급량 예측을 위한 데이터 마이닝 기법 (Data Mining for Water Supply Forecasting)

  • 신강욱;김연권
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.233-235
    • /
    • 2021
  • 본 논문에서는 물 공급량 예측을 위한 다양한 알고리즘 적용에 있어서 데이터 마이닝의 효용성을 검토하고자 하였다. 물 공급분야에 있어서, 물 이용 지역의 특성에 따라 공급량과 이용 시간이 매우 상이한 특성을 나타낸다. 물 이용 지역은 주택지역, 상업지역, 산업단지지역 등 다양한 형태로 분류할 수 있고, 이에 따라 물 이용 시간의 상이함에 따른 물 공급패턴이 일정하지 않게 된다. 특히, 주택지역과 상업지역이 복합적으로 이루어진 경우, 물 이용 단위인 블록 단위에서의 물 특성이 불규칙적인 패턴을 나타낸다. 따라서, 각 블록 단위 특성에 적합한 물 이용량을 예측하여 효율적 물 공급 방안을 마련할 필요가 있다. 또한, 물 이용량 데이터 중 이상 데이타 감지와 이상 데이터 보정을 통하여 물 이용량 예측의 정확도가 향상된다. 따라서, 블록 단위의 물 이용량에 대한 원시데이타의 효율적인 데이터 마이닝 방안이 요구된다. 본 연구에서는 물 공급지역의 특성에 따른 물 공급 패턴을 분석하고, 이에 적합한 데이터 마이닝 기법을 제시하고 비교 분석하였다. 제안된 데이터 마이닝 기법은 딥러닝 예측모델을 적용하여 적합성을 검증하고, 이를 물 공급량 예측알고리즘에 폭넓게 활용될 수 있음을 확인하였다.

  • PDF

침입탐지시스템의 성능향상을 위한 결정트리 기반 오경보 분류 (Classification of False Alarms based on the Decision Tree for Improving the Performance of Intrusion Detection Systems)

  • 신문선;류근호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권6호
    • /
    • pp.473-482
    • /
    • 2007
  • 네트워크 기반의 침입탐지시스템에서는 수집된 패킷데이타의 분석을 통해 침입인지 정상행위 인지를 판단하여 경보를 발생 시키며 이런 경보데이타의 양은 기하급수적으로 증가하고 있다. 보안관리자는 이러한 대량의 경보데이타들을 분석하고 통합 관리하여 네트워크 보안레벨을 진단하거나 시간에 따른 적절한 대응을 하는데 유용하게 사용하여야 한다. 그러나 오경보의 비율이 너무 높아 경보 데이터들간의 상관관계 분석이나 고수준의 의미 분석에 어려움이 많으므로 분석결과에 대한 신뢰성이나 분석의 효율성이 낮아지는 문제점을 가진다. 이 논문에서는 데이타 마이닝의 분류 기법을 적용하여 오경보율을 최소화하는 방법을 제안한다. 결정트리기반의 분류 기법을 오경보 분류 모델로 적용하여 오경보들 중 실제는 공격이 아님에도 불구하고 공격이라 판단된 오경보를 정상으로 분류할 수 있는 경보 데이타 분류 모델을 설계하고 구현한다. 구현된 경보데이타 분류 모델은 오경보율을 최소화하므로 경보데이타의 분석 및 통합을 통해 경보메시지의 축약 및 침입탐지시스템의 탐지율을 높이는데 활용될 수 있다.