• Title/Summary/Keyword: 시간집속

Search Result 49, Processing Time 0.021 seconds

Investigating the spatial focusing performance of time reversal Lamb waves on a plate with respect to input source location and the number of sensors (입력소스의 위치와 센서개수에 따른 평판에서의 시간반전램파의 공간집속성능 규명)

  • Seo, dae jae;Park, huyn woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.722-725
    • /
    • 2014
  • The spatial focusing of time reversal Lamb waves on a plate has attracted considerable attention for identifying the location of an input source. This study investigates the spatial focusing performance on a plate with respect to the number of piezoelectric (PZT) sensors for varying locations of input sources. In particular, a small number of PZT sensors produce spatial focusing through the virtual sensor effect due to reflection of Lamb waves at plate edges. The spatial focusing performance with respect to the number of PZT sensors is quantified in terms of signal to noise ratio through numerical simulation and its implication is discussed.

  • PDF

A Study on the Near-Field Simulation Method for AESA RADAR using a Single Beam-Focusing LUT (단일 빔 집속 LUT를 이용한 AESA 레이다의 근전계 시뮬레이션 기법)

  • Ju, Hye Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • Since the AESA radar scans and tracks a distant targets or ground, it requires a test field which meets far-field condition before flight test. In order to test beam foaming, targeting, and availability from cluttering and jamming, it is general to build a outdoor roof-lab test site at tens of meters high. However, the site is affected by surrounding terrain, weather, and noise wave and is also requires time, space, and a lot of costs. In order to solve this problem, theoretical near-field beam foaming method has proposed. However, it requires modification of associated hardware in order to construct near-field test configuration. In this paper, we propose near-field beam foaming method which use single LUT in order to calibrate the variation of TRM(transmit-receive module) which consists AESA radar without modification of associated hardware and software. It requires less costs than far-field test and multiple LUT based near-field test, nevertheless it can derives similar experimental results.

Si(100) Surface Structure Studied by Time-Of-Flight Impact-Collision ton Scattering Spectroscopy (비행시간형 직충돌 이온산란 분광법을 이용한 Si(100) 면의 구조해석)

  • Hwang, Yeon;Lee, Tae-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.765-769
    • /
    • 2003
  • Time-Of-flight Impact-Collision Ion Scattering Spectroscopy (TOF-ICISS) using 2 keV He$\^$+/ ion was applied to study the geometrical structure of the Si(100) surface. The scattered ion intensity was measured along the [011] azimuth varying the incident angle. The focusing effects were appeared at the incident angles of 20$^{\circ}$, 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$. The Si atomic position was simulated by calculating the shadow cone to explain the five focusing effects. The four focusing effects at 28$^{\circ}$, 46$^{\circ}$, 63$^{\circ}$, and 80$^{\circ}$ resulted from the {011} surface where no dimers existed on the outermost surface. On the contrary, the scattering between two Si atoms in a dimer resulted in the focusing peak at 20$^{\circ}$.

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

Fast Acoustic Radiation Force Impulse Imaging Using Non-focused Transmission in Medical Ultrasound Imaging (초음파 의료 영상에서 비집속 송신을 이용한 고속 음향 복사력 임펄스 영상법)

  • Choi, Seung-Min;Park, Jeong-Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.151-160
    • /
    • 2012
  • In medical ultrasound imaging, elasticity imaging helps to diagnose tumors such as cancer. This paper is concerned with the application of acoustic radiation force to soft tissue of interest to implement elasticity imaging. In order to reduce the data acquisition time, instead of relying on transmit focusing, a plane wave of burst type is transmitted to apply the acoustic radiation force simultaneously to an entire imaging region to be observed. A homogeneous phantom experiment confirms that increasing the transmit excitation duration instead of employing transmit focusing generates a high enough acoustic radiation force to obtain elasticity images. It is found, however, that a different displacement versus time characteristic is observed unlike the case of using a conventional focused acoustic radiation force. Experimental results obtained through the use of an ultrasound phantom and a bovine liver show that lesions can be correctly differentiated.

Limitations of time resolution and spatial overlap caused by group velocity mismatch in experiments using ultrashort UV and visible optical pulses. (자외선과 가시광선 극초단 펄스 실험의 군속도 차이에 의한 시간 분해능 및 공간 겹침의 제한)

  • 김성규
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.252-259
    • /
    • 1994
  • The method of calculating overlap dispersion caused by group velocity mismatch between uv and visible pulses in ultrafast pump-probe experiments is presented to discuss limitations of the time resolution and signal intensity. The calculations show arrangements using a single focusing lens shall result in undesirable time resolution and low signal intensity. Achromatic doublets result in unrealistic solutions. However, dramatic improvement in the time resolution and signal intensity is expected in the optical arrangements using separate lens for each pulse and in the arrangements using a cutoff secondary lens with a main lens. lens.

  • PDF

Fault Analysis of Semiconductor Device (반도체 장치의 결함해석)

  • Park, S.J.;Choi, S.B.;Oh, C.S.
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.192-197
    • /
    • 2016
  • We have surveyed on technical method of fault analysis of semiconductor device. Fault analysis of semiconductor should first be found the places of fault spots. For this process they are generally used the testers; EB(emission beam tester), EM(emission microscope), OBIRCH(optical beam induced resistance change method) and LVP(laser voltage probing) etc. Therefore we have described about physical interpretation and technical method in using scanning electron microscope, transmission electron microscope, focused ion beam tester and Nano prober.

Surface Structure Analysis of Solids by Impact Collision Ion Scattering Spectroscopy(2): Atomic Structure of Semiconductor Surface (직충돌 이온산란 분광법(ICISS)에 의한 고체 표면구조의 해석(2): 반도체 재료의 표면구조 해석)

  • Hwang, Yeon
    • Korean Journal of Crystallography
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • 고체 표면의 구조해석 방법에는 LEED(저에너지 전자선 회절법)나 RHEED(반사 고에너지 전자선 회절법) 등과 같이 표면의 2차원적 회절상을 해석하는 방법이 있고(역격자 공간의 해석), 또는 ISS(이온산란 분광법), RBS(러더포드 후방산란법) 등과 같이 표면 원자의 실공간에 대한 정보를 직접 얻는 방법이 있다. 실제로는 두 가지 종류의 분석법을 상호 보완적으로 조합하여 효율적인 구조해석을 수행한다. 본고에서는 직충돌 이온산란 분광법(ICISS: Impact Collision Ion Scattering Spectroscopy)에 대한 원리, 장치, 측정방법 등을 소개한 전고에 이어서 이를 이용한 반도체 표면구조 해석에 관하여 기술하고자 한다. 표면의 원자구조를 알아내기 위해서는 산란된 입자의 강도를 입사각도와 출사각도에 대하여 조사하여야 하는데, 이온이 원자와 충돌하여 산란될 때 원자의 후방으로 형성되는 shadow cone에 의하여 생성되는 집속 효과(focusing effect) 및 가리움 효과(blocking effect) 중에서 ICISS는 집속 효과만을 고려하여 해석하면 실공간에서의 원자구조를 해석할 수 있다. 본 고에서는 ICISS를 이용하여 금속 또는 절연체 물질이 반도체 표면 위에서 흡착 또는 성장될 때 초기의 계면 구조 해석, 금속/반도체 계면에서 시간에 따른 동적변화 해석, III-V족 반도체의 표면구조 해석, 반도체 기판 위에서 박막 성장 과정 해석 등에 관한 연구 사례를 소개하고자 한다.