• Title/Summary/Keyword: 승온

Search Result 399, Processing Time 0.021 seconds

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering (스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체)

  • 조경식;이광순;송진호;김진영;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2003
  • Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

Crystallization Kinetics by Thermal Analysis (DTA) on Starting Glass Compositions for PDP(Plasma Display Panel) Rib (열분석에 의한 PDP 격벽용 출발유리조성의 결정화 특성 연구)

  • Jeon, Young-Wook;Cha, Jae-Min;Kim, Dae-Whan;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.8
    • /
    • pp.721-727
    • /
    • 2002
  • In order to overcome trade-off among compositions, process and properties of the glasses with high PbO-base composition for PDP Rib, we studied glass crystallization and crystallization kinetics by Differential Thermal Analysis(DTA). Glass powder was obtained through melting/cooling/grinding, with 3 wt%TiO2 addition for the crystal nucleation and growth in $62PbO-19B_2O_3-10SiO_2-9(Al_2O_3-K_2O-BaO-ZnO)$(in wt%) composition glass. This powder was heat-treated for 1 to 10 h at $445^{\circ}C$ for nucleation. DTA measurements were performed to obtain the crystallization peak with $5∼25^{\circ}C/min$ heating rates. DTA crystallization peak temperature increased with increasing the heating rate and decreased with increasing the heating time. Because the Avrami parameter (n) was approximately 1, the surface crystallization occurred. The maximum nucleation time was 2 h.

Process Development for Production of Ultramarine Blue from Kaolin (고령토로부터 군청안료 제조)

  • Choi, Young-Yoon;Lee, Hoo-In;Kim, Byung-Su;Kim, Sang-Bae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.107-114
    • /
    • 2009
  • In present study, an alternative process for manufacturing ultra marine blue by using kaolin, sulfur, sodium carbonate, silica, and rosin was investigated. From the experiments, it was found in the reductive calcination process that the temperature variation with the bed height of input materials is relatively high due to the inadequate thermal conductivity of them. It was also found that the color of the ultramarine blue manufactured is sensitive for the shape of the input materials and the calcinations conditions, and specially the heating rate is very important to form ultramarine. For manufacturing green ultramarine by using sulfur, sodium carbonate, silicon, and pine resin, an optimum condition was investigated to be the heating rate region below $0.6^{\circ}C/min$, the reaction temperature of $850^{\circ}C$ and the reaction time of 4 hr. At the oxidative calcination process to manufacture ultra marine blue from green ultramarine, the optimum flow rate of air is $500{\sim}550\;{\ell}/kg$ (green ultramarine) and the reaction temperature is $500{\sim}550^{\circ}C$.

Pyrolysis Characteristics of the Mixture of Waste Fishing Net and Waste Ship Lubricating Oil (폐어망과 선박용 폐윤활유 혼합물의 열분해반응 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.568-573
    • /
    • 2008
  • Kinetic tests on pyrolysis of waste fishing net [WFN; nylon-6], waste ship lubricating oil [WSLO] and their mixture were carried out by thermogravimetric analysis (TGA) with heating rate of 0.5, 1.0, and $2.0^{\circ}C/min$. Pyrolysis of waste fishing net started at $300^{\circ}C$, and the main region of decomposition temperature was between 360 and $440^{\circ}C$ at each heating rate. Decomposition temperature of the mixture of WFN and WSLO was lower than that of WFN and WSLO, and the shape of thermogravimetic graph of mixture was different as well. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for the mixture of WFN and WSLO were between 98 and 427 kJ/mol as the conversion increased from 5% to 95%. Tubing reactor was used to analysis of pyrolyzed oil at $440^{\circ}C$ for 80 min. The selectivity of specific hydrocarbons was not detected and the carbon number distribution of the pyrolyzed oil was below $C_{22}$.

Study on the Thermal Characteristic Comparison of Fire.Explosion Hazard of Fugitive Dust Generated in the Manufacturing Process (제조공정상 발생하는 비산분진의 화재·폭발 위험성에 대한 열적특성 비교에 관한 연구)

  • Sun, Ko Jae
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • This study carried out an experiment in order to compare thermal characteristics after collecting dust generated in the process of disposing of waste tire, plywood flour in the process of manufacturing plywood, salicylic acid dust in the process of manufacturing functional soap, and dust in the process of manufacturing wheat powder, which has potential fire and explosion hazard. According to the results of experiment, the analysis showed that all samples subject to the experiment were in the condition where heat flux decreased and temperature decreased as the quantity of added talc was increased. This shows that decomposition rate decreased, and hazard decreased. However, in all of samples subject to the experiment, as heating rate increased, endothermic onset temperature moved to the low-temperature part, and the amount of absorbed heat was largely increased. This showed that the decomposition hazard of sample increased as heating rate increased, according to the analysis. Besides, TGA experiment results showed that thermal stability was secured because total weight loss decreased as the amount of talc was increased for all samples subject to the experiment regarding the ratio of weight loss. It is expected that the continuous research and supplementation of dust explosion mechanism in the future will contribute to the establishment of measures for the effective dust explosion prevention.

Effects of Shading Rate and Method of Inside Air Temperature Change in Greenhouse (차광율 및 차광방법이 온실내부의 온도변화에 미치는 영향)

  • 이석건;이현우;김길동;이종원
    • Journal of Bio-Environment Control
    • /
    • v.10 no.2
    • /
    • pp.80-87
    • /
    • 2001
  • This study was conducted to provide basic data for the design of shading facility of greenhouse. The proper distance between external shading screen and roof surface, transmissivity of shading materials, and shading effects of external and internal shadings were analyzed. About a distance of 10 cm between inclined external shading screen and roof surface was enough to guarantee the external shading effect in the greenhouse without roof vent. The inside temperature of greenhouse installed with 85% internal shading screen was lower the maximum of 4$^{\circ}C$ and mean of 2$^{\circ}C$ than that with 55% internal shading screen in both natural ventilation and no ventilation condition. The difference of soil temperature between shading and no shading greenhouse was great, but the difference by shading rate or shading method was small. The performance of external shading for controlling inside temperature down was superior to that of the internal shading. The externally inclined shading screen parallel to the roof surface of greenhouse was more effective than the externally horizontal shading screen in controlling inside temperature of greenhouse without roof vent.

  • PDF

Preparation and Properties of Quasi-Carbon Fibers from Stabilized PAN Fibers (안정화 PAN 섬유로부터 준탄소섬유의 제조 및 물성)

  • Cho, Dong-Hwan;Choi, Yu-Song;Park, Jong-Kyoo
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.575-586
    • /
    • 2001
  • Stabilized polyacrylonitrile (PAN) fibers can be transformed into quasi-carbon fibers with different properties depending on heat-treatment processing parameters at lower temperatures than temperature for the fabrication of carbon fibers. It has been investigated from the preliminary work that appropriate quasi-carbonization processes at about 1100$^{\circ}C$ strongly influence various properties of quasi-carbon fiber/polymer composite as well as quasi-carbon fiber itself. The objective of the present work is to prepare quasi-carbon fibers from stabilized PAN fibers using various quasi-carbonization cycles and to examine their properties. Two temperature regions, up to 800$^{\circ}C$ and above 1000$^{\circ}C$, were used for quasi-carbonization processes. The chemical composition, physical properties, thermal stability, microstructure, mechanical properties and electrical resistivity of the quasi-carbon fibers prepared with different final heat-treatment temperatures, heating rates, holding times, heating steps, and purging gas purity were extensively examined. The results were also compared with those from stabilized PAN fiber and commercial PAN-based carbon fiber. The present study showed that a variety of properties of quasi-carbon fibers significantly depended on several quasi-carbonization process parameters.

  • PDF

Physicochemical Properties of MnO2 Catalyst Prepared via Hydrothermal Process and its Application for CO Oxidation (수열방법으로 합성된 이산화망간의 물리화학적 특성과 일산화탄소 산화반응)

  • Lee, Young-Ho;Jeon, Su A;Park, Sang-Jun;Youn, Hyun Ki;Shin, Chae-Ho
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.248-256
    • /
    • 2015
  • MnO2 was prepared by a hydrothermal process method in the range of 120-200 ℃ and 0.5-5 h, calcined at 300 ℃ after induction of precipitation using KMnO4 and MnCl2・4H2O, and its catalytic activity was compared for CO oxidation. The catalysts were characterized using by X-ray diffraction, N2-sorption, scanning electron microscopy, and temperature programmed reduction of H2 or CO. The crystalline structure of pure α-MnO2 or hybrid α/β-MnO2 was controlled by the preparation conditions. The pure α-MnO2 showed better catalytic activity and thermal stability than hybrid α/β-MnO2. Especially, α-MnO2 prepared at 150 ℃ for 1 h has the highest specific surface area 214 m2 g-1, reducibility and labile lattice oxygen species analyzed by H2, CO-TPR, respectively. It also showed the best CO oxidation activity in both conditions of temperature programmed and isothermal reaction. The results came from the physicochemical properties of catalysts like the crystalline structure, specific surface area, reducibility and lattice oxygen species, and which are correlated with catalytic performance.

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature (Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향)

  • Choi, Dong Hyuck;Park, Jung Eun;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.372-381
    • /
    • 2015
  • The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

Development of ultrafine grained silicon carbide by spark plasma sintering (스파크 플라즈마 소결에 의한 초미세 결정립 탄화규소의 개발)

  • 조경식;이광순;백성호;이상진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • Rapid densification of a SiC powder with additive 0.5 wt% $B_4$C was conducted by spark plasma sintering (SPS). The unique features of the process are the possibilities of using very fast heating rate and short holding time to obtain fully dense materials. The heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature and soaking time varied to 1800, 1850, 1900 and $1950^{\circ}C$ and 10, 20 and 30 min, respectively. All of the SPS-sintered specimens at $1950^{\circ}C$ reached near-theoretical density. The XRD found that 3C-to-6H transformation at $1850^{\circ}C$. The microstructures of the rapidly densified SiC ceramics consisted of duplex microstructure with ultrafine equiaxed grains under 2 $\mu\textrm{m}$ and elongated grains of 0.5∼2 $\mu\textrm{m}$ wide, length 3∼10 $\mu\textrm{m}$. The biaxial strength increased with the increase of sintering time. Strength of 392.7 MPa was obtained with the fully densified specimen sintered at $1950^{\circ}C$ for 30 min, in agreement with the general tendency that strength increases with decreases pore. On the other hand, the fracture toughness shows the value of 2.17∼2.34 MPa$.$$m^{1/2}$ which might be due to the transgranular fracture mode.