• Title/Summary/Keyword: 승강기시스템

Search Result 66, Processing Time 0.026 seconds

A Simulation Model for the Elevator Queueing System (승강기 대기시스템의 시뮤레이션 모델)

  • O Hyeong-Jae;Min Eun-Gi
    • Journal of the military operations research society of Korea
    • /
    • v.12 no.1
    • /
    • pp.87-105
    • /
    • 1986
  • Among the various types of waiting line systems, the elevator servicing system is quite different from the usual queueing system in view of the service characteristics. For example, the FIFO discipline is not always valid depending upon the situation when the direction of first-come customer's is opposite of the operating elevator direction and at that time a later-arrived one has a luck to be served first. In this paper, a simulation model is constructed and tested by the sample data and the results have turned out to be fairly adequate. This model, therefore, will provide a good guide to anyone who is interested in the decision of optimal location selection of no-passenger elevator in high buildings whatsoever. This model is also available, with slight modification, to the problem of city bus dispatching or any other waiting line problems where the servicing equipments are moving.

  • PDF

Safety Leader - 이근오 효택안전학회 회장

  • Yeon, Seul-Gi
    • The Safety technology
    • /
    • no.196
    • /
    • pp.16-17
    • /
    • 2014
  • 우리나라 안전 역사를 이끌어가고 있는 주역이자 기계안전분야의 최고 권위자 중 하나인 이근오 서울과학기술대학교 교수가 최근 새로운 도전을 시작했다. 국내 안전 관련 학술단체의 대표라 할 수 있는 한국안전학회의 15대 회장에 선출된 것이다. 이근오 신임 회장은 행정안전부 승강기 사고조사 판정위원회 초대위원장, 노사정위원회 산업재해예방시스템 선진화위원회 위원, 서울시 안전감사 옴부즈만, 한국가스안전공사 사고조사위원회 위원 등 그간 정부와 기업, 지자체를 넘나들며 안전 분야의 성장과 발전을 주도해왔다. 또한 30여 년간 강단에서 예비 안전인들을 육성하는 데에도 헌신해왔다. 이런 큰 발자취를 남긴 그가 이제는 안전분야 학자와 지식인들을 하나로 모으기 위해 본격적인 움직임에 나섰다. 이에 따라 안전학회의 향후 행보에 각계의 시선이 집중되고 있다. 이근오 회장을 만나 앞으로의 계획과 그만의 안전칠학에 대해 이야기를 나누어 봤다.

  • PDF

Pipe Design for Hydraulic System in Construction Heavy Equipment by Numerical Analysis (수치해석을 통한 건설중장비 유압시스템용 파이프설계에 대한 연구)

  • Shin, Yoo In;Yi, Chung Seob;Han, Sung Gil;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.64-71
    • /
    • 2019
  • We herein propose a systematic design method of hydraulic pipes used in heavy construction equipment. We found that even though many design studies have been conducted regarding major hydraulic components such as pumps, cylinders, and control valves, studies regarding the optimal design of hydraulic pipes are scarce. In this study, the design of four types of pipes is considered: two high-pressure and two low-pressure pipes. First, fluid flow analysis was conducted based on oil flow and pressure for various radii of curvature. For a check-valve pipe, we considered the location of an inlet pipe. We could visualize fluid flow inside the pipe according to the flow velocity and pressure distribution. Based on fluid flow analysis, we conducted a structural analysis that revealed the stress distribution and concentration for each pipe design. We selected the best design parameters for each pipe design, fabricated the pipes, and subsequently tested them for validity.

Thermal and Flow Analysis of Organic Rankine Cycle System Pipe Line for 250 kW Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.26-33
    • /
    • 2019
  • This study is a thermal and flow analysis of Organic Rankine Cycle (ORC) pipe line for 250 kW grade waste gas heat recovery. We attempted to obtain the boundary condition data through the process design of the ORC, which can produce an electric power of 250 kW through the recovery of waste heat. Then, we conducted a simulation by using STAR-CCM+ to verify the model for the pipe line stream of the 250 kW class waste heat recovery system. Based on the results of the thermal and flow analyses of each pipe line applied to the ORC system, we gained the following conclusion. The pressure was relatively increased at the pipe outside the refracted part due to the pipe shape. Moreover, the heat transfer amount of the refrigerant gas line is relatively higher than that of the liquid line.

Structural Analysis of a Carriage Shuttle System : A Material Supply Device for Small-Scale Machine Tools (소규모 공작기계용 소재공급장치의 이송 셔틀 시스템에 관한 구조해석)

  • Kang, Dae-Sung;Jung, Eun Ik;Kim, Kyung-Heui;Baek, Il-Cheon;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.62-68
    • /
    • 2019
  • The aim of this study was to interpret the structure and dynamics of a transfer shuttle system as a material supply device for small machine tools. The following conclusions were obtained by performing a structural interpretation of the material supply equipment with respect to workload and the dynamical interpretation of a flexible multibody carriage shuttle. When a 1,000-kg workload was applied to a fork lift, the safety factor was approximately 1.86. To conservatively assess the integrity of the structure, a 1,000-kg workload would be proper. In the case of a deflection of the fork system, the width increased with increasing time. The greatest deflection occurred at 5.5 s, which was the largest increase in the time point of the fork system.

A Study on the Engineering Design for 250kW-Grade Waste Gas Heat Recovery (250kW급 폐열회수 시스템 공정설계에 관한 연구)

  • Kim, Kyoung Su;Bang, Se Kyoung;Seo, In Ho;Lee, Sang Yun;Jeong, Eun Ik;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.90-95
    • /
    • 2019
  • This study aims to gain the design data through the process design of the organic Rankine cycle, which can produce 250kW of electric power through waste heat recovery. In this study, a simulation was conducted using APSEN HYSYS to make the model for the process design of the 250kW-class waste heat recovery system. For the thermodynamic model, the test was conducted with hot water as the heat source, the water steam as the cooling water for the cooler, and the refrigerant R245FA in the cycle. In the final design, it was expected and found from the simulation that the cycle efficiency was 12.62% and that 250kW of power was produced considering the margin of 80%.

Construct of Electronics Load System using the Multi-level Interiver Converter (다중전류레벨 인터리버 컨버터를 이용한 전자부하 시스템 구성)

  • Moon, Hyeon-Cheol;Song, Kwang-Cheol;Lee, Chang-Ho;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.989-998
    • /
    • 2020
  • Recently, demands for large-capacity electronic loads are increasing in various industries such as a reliability test for the performance of a DC power supply device or a dummy-load for improving the stability of an independent microgrid to be actively built in the future. The electronic load required in these various fields requires an operation such as a continuously variable resistance load while minimizing the switching harmonic component generated in the electric load current in order to reduce the influence of interference from the load peripheral device. Electronic loads require a system that minimizes switching current ripple for load control. Therefore, in this paper, we propose a three-level module converter structure to reduce the current ripple of an electronic load, and a multilevel interleaved power converter topology to reduce the current ripple. The validity of the proposed electronic load, 3-level 6 interleaver converter, was verified by simulation and experiment. In addition, the user's convenience was provided by applying the emotional command curve interface method.

A Development of Sensor Monitoring System for Offshore Plant Cargo Lift (해양플랜트용 Cargo Lift 센서 모니터링 시스템에 관한 연구)

  • Kim, Bae-sung;Hwang, Hun-gyu;Shin, Il-sik;Choi, Jung-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.364-366
    • /
    • 2017
  • Unlike general ships, offshore plants require high reliability due to their long operating time at fixed positions when they are operated. Sensor-based status information is required for user and maintenance worker to ensure safety. In this paper, we propose a monitoring system for safety diagnosis and inspection of cargo lift for offshore plant. It consists of a sensor unit mounted on the cargo Lift, an embedded system measurement unit, and a monitoring unit for real-time data verification. It is based on the ship standard network IEC 61162-450 for the exchange of operating information and sensor measurement information in accordance with the upgrading and integration of equipment in maritime.

  • PDF

A Study on Integrated Group Control System for the Disabled Elevators (장애인용 엘리베이터의 통합 군관리제어시스템 방안 연구)

  • Lee, Ho-Cheol;Choi, Young-Kiu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.430-435
    • /
    • 2014
  • When multiple elevators are installed in the building, control systems for each of the elevators, reducing energy loss by elimination of unnecessary movements and assigning appropriate elevators to passengers upon request are called the elevator group control system. However, the group control system of three or more elevators for the Disabled is being limited by the domestic laws and standards because it can not predict which unit will be called. In this paper, as an improvement plan, an integrated group control system of elevators for the general passengers and the disabled is proposed; its efficiency that decreases 16.9 % of waiting time is verified with comparison of the traditional separate group control systems. The proposed Integrated Group Control System does not violate the domestic laws and standards. Also its good performance is shown through computer simulations.

The Study on Control Algorithm of Elevator EDLC Emergency Power Converter (승강기 EDLC 비상전원 전력변환장치 제어 알고리즘 연구)

  • Lee, Sang-min;Kim, IL-Song;Kim, Nam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.709-718
    • /
    • 2017
  • The installation of the elevator ARD(Automatic Rescue Device) system has been forced into law in these days in order to safely rescue passengers during power failure. The configuration of the ARD system consists of energy storage device, power converter and control systems. The EDLC(Electric Double Layer Capacitor) are used as energy storage device for rapid charge/discharge purposes. The power conditioning system (PCS) consists of bi-directional converter, 3-phase converter and control system. The dead-beat control system is adopted for most systems however it requires complex mathematical calculations, the high performance microprocessors are mandatory and thus it can be a cause of high manufacturing cost. In this paper the new control method for average current mode control is presented for simple structure. The control algorithm is applied to the single phase system and then expands to three phase system to meet the sysem requirements. The mathematical modeling using average modeling method is presented and analysed by PSIM computer simulation to verifie the validity of the proposed control methods.