• Title/Summary/Keyword: 습도 조절

Search Result 441, Processing Time 0.026 seconds

The Experimental Study on a Effect of Korean Paper (Hanji) on Indoor Humidity Control (한지(韓紙)가 실내습도조절에 미치는 영향에 관한 실험적 연구)

  • 이종원;임정명
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-607
    • /
    • 2004
  • The purpose of this study is to reevaluate the performance of Hanji as an architectural material. Hanji has good things in controlling indoor space comfortably. Particularly, ability of controlling humidity of Hanji affects indoor space comfort and human health. The major focuses of this experimental research are (1) how much of water vapor passes through Hanji, (2) how much of water vapor is absorbed into Hanji. In the first case, indoor humidity is higher than outdoor humidity. In this case, approximately 38 g of water vapor passes through Hanji 1, genarally utilized in window paper (Changhoji), per square meter in one hour. And approximately 4 g of water vapor is absorbed into Hanji 2, genarally utilized in wallpaper, per square meter. In the second case, outdoor humidity is higher than indoor humidity. In this case, Hanji passes water vapor to inner space at first, but when indoor relative humidity reach approximately 66%, although outdoor humidity is higher than indoor humidity, water vapor doesn't pass through Hanji. If Hanji is utilized in window material and wallpaper, indoor space is maintained comfortably without mechanical devices in humidity control.

Implementation of Wireless Automatic Control System for Vehicle Interior Environment (차량 내부 환경 제어용 무선 자동화 시스템 구현)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.287-291
    • /
    • 2010
  • In this paper, we designed and implemented mobile object automatic system based on senor networks for telematics. For developing this system, we gather the various sensing data through wireless communication method using zigbee sensor networks and analyze them in monitoring equipment. And we enable the driver to recognize the car state information on the whole by interfacing analyzed data to telematics unit. And, we implemented automatic controller that can control temperature and humidity in car automatically by actuating air conditioner based on the data that was monitored throughout temperature sensor, humidity sensor and brightness sensor based on sensor networks.

Experimental Study on Thermal Comfort Sensation of Korean and Physiological Signal Part I : Analysis of Subjective Judgement in Winter Experiment (한국인의 온열쾌적감 및 생리신호에 관한 연구 (Part I : 겨울철 체감실험 결과))

  • 주익성;김동규;금종수;최광환;이구형;임금식
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.107-112
    • /
    • 1997
  • 본 연구의 목적은 겨울철 난방시 한국인의 온열감각과 온열환경지표 사이의 상관관계 및 ASHRAE Standard 55-74의 쾌적영역과 한국인의 쾌적영역을 체감실험을 통해 규명 및 제시하는 것이다. 유니폼을 착용한 피실험자는 온도, 습도, 기류 등이 조절되는 환경시험실에서 2시간동안 체재하면서 매 15분 마다 전신온냉감, 쾌불쾌감 등을 신고하였다. 또한 인체의 3부위에서 피부온도, 환경시험실의 온도 및 습도를 매 20초 간격으로 측정하였다. 이상의 체감실험을 통해 아래의 결론을 얻었다. 1)평균피부온도가 증가함에 따라 TSV는 선형적으로 증가하며 열적으로 중립감을 느낄 때의 평균피부온도는 청년 34.$0^{\circ}C$, 고령자 33.5$^{\circ}C$이다. 2)TSV=0일때 청년의 중립 SET*는 25.5$^{\circ}C$, 고령자의 중립 SET*는 27.$0^{\circ}C$이다. 3)한국인의 쾌적범위는 청년의 경우 SET*의 경우 24.2-26.8$^{\circ}C$, 고령자의 경우 SET*25.7-28.2$^{\circ}C$로 ASHRAE St.55-74의 권장 쾌적범위 (22.0-25.4$^{\circ}C$)보다 다소 고온지향적이다.

  • PDF

Development of automatic vacuum control system to improve CCD cooling performance

  • Yoon, Joh-Na;Song, SeongHyeon;Park, SoonChang;Kim, Yonggi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49.2-49.2
    • /
    • 2021
  • 천체관측은 무한대 거리에서 오는 광자의 양을 측정하는 분야로 미량의 광자를 측정하기 위하여 측정기의 냉각은 아주 중요한 문제가 되었다. 과거에는 측정기 냉각에 드라이아이스가 사용되어 왔으며, 1980년대에는 액체질소를 이용한 냉각이 주를 이뤘다. 액체질소를 이용한 냉각 방식은 액체질소를 생성하거나 구입하여야 하는 불편함이 있었으며, 주입시 낮은 온도로 인하여 항상 안전사고에 대비하여야 했다. 1990년대 이후 다양한 상업용 CCD의 개발로 인하여 상대적으로 저렴한 CCD를 판매하였으며, 상업용 CCD는 이전 -110℃의 냉각이 아닌 -30℃의 냉각 성능을 보였다. 상업용 CCD는 CCD 칩 내부의 진공 구현이 미비하였으며, 초기 판매시 아르곤 가스 또는 실리카겔 등으로 CCD 칩 내부의 습도를 낮춰왔으나, 구입 후 1~2년이 지나면 점차 가스 누설로 인하여 CCD 칩 내부에 얼음이 생기는 문제가 발생하기 시작하였다. 이번 연구는 CCD 칩 내부 공간에 진공튜브를 삽입하여 실시간 진공상태를 측정하는 한편, 10Torr 이상 진공 도달시 자동으로 내부 공기를 흡입하여 CCD 칩 내부를 항시 10Torr 이하로 유지하도록 개발하였으며, 10Torr 이하의 진공 유지시 습도 99%의 환경에서 최대 냉각인 -35℃를 유지하여도 전혀 얼음이 생기지 않음을 확인하였다. 이번연구로 개발된 자동 진공조절시스템이 각 천문대에서 사용중인 상업용 CCD에 적용된다면, 날씨환경에 관계없이 항상 최대냉각 상태로 천체관측을 진행할 수 있으리라 기대된다.

  • PDF

Technology for Improving the Uniformity of the Environment in the Oyster Mushroom Cultivation House by using Multi-layered Shelves (느타리버섯 균상재배사의 환경균일성 향상을 위한 기술 개발)

  • Lee, Sunghyoun;Yu, Byeongkee;Kim, Hyuckjoo;Yun, Namkyu;Jung, Jongcheon
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • Mushrooms can grow in nature when adequate temperature and humidity are maintained, but such condition can be satisfied for only a short period of time on an annual continuum. Therefore, it can be deemed that a majority of the distributed mushrooms in the current market are produced in an artificially manipulated environment. This study was conducted to resolve the problem of the Oyster mushroom cultivation house's internal temperature and humidity imbalance, where the Oyster mushrooms are cultivated in a multi-layered shelves. The air circulation fans were installed to improve the air uniformity of the Oyster mushroom cultivation house by using multi-layered shelves. During the experiment, the ambient temperature and the ambient relative humidity ranged from $5.2^{\circ}C$ to $20.4^{\circ}C$ and 40% to 100% respectively. Due to the change of the outdoor temperature, the internal temperature of the Oyster mushroom cultivation house also changed, ranging from $13.3^{\circ}C$ to $18.4^{\circ}C$, but the temperature gap between the different internal location of the facility during the conforming recorded time only ranged from $0.2^{\circ}C$ to $1.3^{\circ}C$, being significantly stable. The internal relative humidity, ranging from 82% to 96%, also changed due to the change of the outdoor temperature. Nevertheless, the relative humidity gap between the different internal location during the conforming recorded time only ranged from 2% to 7%. Furthermore, the research staff were able to maintain the concentration of $CO_2$ from 575ppm to 731ppm(below 1,000ppm was the goal) indicating the possibility of an even management of the internal environment by installing the air circulation fan.

The Graft-take and Growth of Grafted Peppers (Capsicum annuum L.) Affected by Temperature, Relative Humidity, and Light Conditions During Healing and Acclimatization (접목활착 기간 중 온도.상대습도 및 광조건이 고추 접목묘의 활착 및 생육에 미치는 영향)

  • Jang, Yoon-Ah;Moon, Ji-Hye;Lee, Ji-Weon;Kim, Seung-Yu;Chun, Chang-Hoo
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.385-392
    • /
    • 2009
  • This study was performed to evaluate the influence of temperature, relative humidity, and light conditions during healing and acclimatization on the graft-take and growth of grafted peppers (Capsicum annuum L.), in order to propose optimum environmental conditions for the healing and acclimatization of grafted peppers. The healing and acclimatization period was for six days and was divided into three stages (Stage I, II and III), of which each period was two days. Grafted peppers were healed under the condition of 30 and 95% relative humidity (RH) during Stage I. During Stage II and III, grafted peppers were healed and acclimatized under different temperatures ($20^{\circ}C$, $25^{\circ}C$, or $30^{\circ}C$) and RH conditions (75%, 85% or 95%). The growth of grafted peppers was greater under lower temperature and lower relative humidity conditions. The graft-take just after the end of healing and acclimatization was greater grafted peppers under high RH condition. However, the graft-take of peppers which were healed and acclimatized under $30^{\circ}C$ and RH 95%, dropped by about 10 percent on day seven after healing and acclimatization. And also, grafted peppers were healed and acclimatized under the different temperatures ($25^{\circ}C$ or $30^{\circ}C$), RH conditions (65%, 75% or 85%), and light condition (dark or light). Lower RH (to 65%) and light condition at $25^{\circ}C$ during healing and acclimatization promoted the graft-take and growth of grafted peppers.

Dynamics of Temperature and Humidity Changes in Lentinula edodes Sawdust Cultivation Sheds (표고 톱밥재배사의 溫-濕度 變化 動態)

  • Koo, Chang-Duck;Kim, Je-Su;Lee, Hwa-Yong;You, Sung-Ryul;You, Chang-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.748-756
    • /
    • 2009
  • The key for cultivating Lentinula edodes in sawdust bags with an appropriate strain and medium is to encourage the mushroom growth, while discouraging contaminating fungi by controlling environment, especially temperature and relative humidity (RH). To investigate the daily and seasonal fluctuation of temperature and RH in two L. edodes cultivation sheds types, HOBO data loggers was set and the collected data were analyzed. In a Taiwan type L. edodes cultivation shed, temperature and humidity changes were divided into five characteristic periods: mycelium growing winter, mushroom fruiting spring, mushroom fruiting early summer, mushroom nonfruiting summer and mushroom fruiting autumn. First, the mycelium growing winter was December to early March with daily mean temperature of $-1{\sim}8^{\circ}C$. Second, mushroom fruiting spring was mid March to late May with daily mean temperature of $8{\sim}21^{\circ}C$ and day-night temperature difference of $15^{\circ}C$. Third, the Mushroom fruiting early summer was early June to early July with 17 to $25^{\circ}C$. Fourth, nonfruiting summer was mid July to mid August with daily mean temperature of $25{\sim}28^{\circ}C$. Lastly, mushroom fruiting autumn was late August to October with daily mean temperature of $10{\sim}23^{\circ}C$ and with cyclic temperature change by $7^{\circ}C$ decrease and 5 increase every 5 to 7 days. In a Chinese type shed, temperature ranged $-1.9{\sim}5.0^{\circ}C$ during winter and $15{\sim}32^{\circ}C$ during June to October. Temperature and relative humidity changed $12{\sim}30^{\circ}C$ and 40~100%, respectively, depending on 0~150 cm shelf heights of by positions in the shed. In conclusion, to grow L. edodes but to discourage contaminating fungi, that is, not to be too high in temperature and RH, the growers changed temperature and RH by adjusting shading, aeration and insulation in the shed.

Control of Water-Adsorption Properties of Mesoporous Silica and MOF by Ion Exchange and Salt Impregnation (양이온 교환 및 염 함침을 통한 메조다공성 실리카와 유기-금속 구조체의 수분 흡착 특성 조절)

  • Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.

Effects of Air Pressures on the Physiology of Silkworm, Bombyx mori L. (공기압력이 잠체생리에 미치는 영향)

  • Kim, Nak-Jung;Shoh, Hae-Ryong
    • Journal of Sericultural and Entomological Science
    • /
    • v.7
    • /
    • pp.27-37
    • /
    • 1967
  • 본 실험은 공기압력이 잠체생리에 미치는 영향을 알고자 수행되었으며 요약하면 다음과 같다. 1. 잠란 부화에 대하여 미치는 공기압력의 영향은 잠품종간에는 차가 없다. 2. 대기압에서 차가 적은 고압 (1 Pound/inch sguare) 또는 저압 (1 Pound/inch sguare)은 부화를 좋게하나, 압력이 클수록 처리시간이 길수록 부화에 나쁜 영향을 미친다. 3. 압력은 견중, 견층비율, 상견비율에 영향을 미치며 영향을 미치며 대기압에서 차가 클수록 처리시간이 길수록 악영향을 미친다. 4. 압력은 잠아체력을 약화시키며 저압은 특히 해롭다. 5. 잠아조직(잠체, 견사선, 소화기)간에 있어서 지방성분에 현저한 차이가 있으며, 잠체조직에서 견사선으로 이동하는 지방성분은 그 량이 적다. 6. 견형성에 있어서 각성분(탄수화물, 지방, 단백질, 회분)은 서로 밀접한 관계가 있다. 7. 압력은 화아일에 영향을 미치며 저압은 화아시간을 연장, 고압은 단축시킨다. 따라서 자웅간화아일 조절을 압력에 의해 할 수 있다. 8. 잠체생리에 미치는 환경요인은 온도, 습도, 광선뿐만 아니고 압력도 큰 영향을 미친다.

  • PDF

The Research on the Indoor Temperature and Humidity Control of Green Roof by Solid Growing Medium in Summer (고형화된 식생기반재를 활용한 여름철 옥상녹화의 실내 온·습도 조절효과 연구)

  • Lee, Hyun-Jung;Yeom, Dongwoo;Lee, Kyu-In
    • KIEAE Journal
    • /
    • v.15 no.3
    • /
    • pp.93-99
    • /
    • 2015
  • Purpose: Various studies on the soil-based green roof systems have been conducted, and a lot of green roof systems were developed. A growing medium board is one of them which was developed for better application and maintenance, however the effect and performance of this material need to be verified. On this background, the purpose of this study is to prove cooling load reduction of green roof by monitoring experiment on the full-scale mock-ups. Method: To do this, Solid growing medium boards were installed on the mock-ups, and indoor temperature and humidity were monitored and analyzed. Result: As a results, the green roof with solid growing medium board were verified effective for controlling indoor temperature in summer.