• Title/Summary/Keyword: 슬롯 가공

Search Result 25, Processing Time 0.028 seconds

A Study on the Optimization of Slot Cut in the End Milling Processes (엔드밀에 의한 슬롯가공의 최적화에 관한 연구)

  • Choi, Jong-Guen;Kim, Hyung-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2006
  • A slot cut in end milling processes is one of the laborious works because the cutting force is likely to deflect the tools excessively, then to make large errors or to fracture the tool. This difficulty is owing to the poor stiffness of slender shaped end mills. Though, in most cases, additional finish cuts are followed after rough cuts, the accuracy of rough cuts is still important because it affects the final accuracy after finish cuts and productivity. The accuracy in slot cuts depends on the tool stiffness and the cutting conditions including depth of cut and feed. In order to meet the desired accuracy, diameter of end mill and cutting allowance have to be selected carefully. This study suggests several guidances for selecting the end mill diameter and the slot cut allowance to improve machining accuracy and productivity in slot end millings. Some experiments were done with the various cutting parameters of tool diameter, depth of cut and feed.

Correlation between Surface Roughness and Vibration in Slot Milling of AL7075-T6 (AL7075-T6의 슬롯가공 시 표면거칠기와 진동의 상관관계에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.61-66
    • /
    • 2022
  • This study investigated the characteristics and relationship between surface roughness and vibration according to the cutting conditions in the slot milling of AL7075-T6. The spindle speed, feed, and depth of cut were selected as independent variables and the amplitude of acceleration and surface roughness as dependent variables. Feed affected the surface roughness. As the spindle speed increased, the amplitude of vibration increased in the direction perpendicular to the feed direction. In addition, the amplitude of vibration and surface roughness showed a negative correlation. Under a given feed, the surface roughness improved as the vibration increased.

A Study on the Deep Kerfing Technique in Rock Using High Pressure Water Jet (워터젯을 이용한 암석의 슬롯절삭에 관한 연구)

  • 최병희;양형식
    • Explosives and Blasting
    • /
    • v.19 no.3
    • /
    • pp.105-113
    • /
    • 2001
  • 채석, 굴착, 가공과 같은 워터젯 응용분야에서 대상재료에 깊은 홈(kerf)을 절단할 수 있는 실험실용 회전식 슬로터(slotter)를 제작하여 암석을 대상으로 워터젯 시스템의 절단효율을 시험하였다. 고압펌프는 유율 7.5 l/min, 압력 379 MPa, 용량 75 kW급의 JETPAC을 주로 사용하였고, 암석시료는 화강석인 제천석, 거창석을 사용하였다. 시험과정에서는 물과 연마재 투입에 의한 절단 및 진동식 슬로터에 의한 슬롯절단 기초시험을 먼저 수행하고, 그 결과를 토대로 회전식 슬로터에 의한 절단시험을 실시하였다. 순수한 물에 의한 시험의 결과 고압수류의 토출압력은 절단심도에 정비례하였고, 노즐의 이송속도는 이차함수 형태의 반비례 관계를 보였다. 연마재 투입시험에서는 순수한 물에 의한 경우에 비해 연마재로 인한 충격력의 증가로 절단심도가 크게 증가하였는데, 유사한 조건하에서 3~5배 이상의 절단심도의 증가를 보였다. 진동식 슬로터에 의한 슬롯절삭에서는 생성된 슬롯의 내벽면이 바닥으로 갈수록 좁아짐으로써 넓은 폭의 슬롯형성은 가능하나 절삭심도가 제한되었다. 회전식 슬로터에 의한 시험에서 생성된 슬롯들은 평균 22 mm의 폭으로 내벽면이 바닥까지 서로 평행하여 깊은 심도까지 비트진입이 가능하였다. 절단율은 16~32 mm/sec의 속도범위에서 $40~160{\;}\textrm{mm}^2/sec$로 나타났다. 한편, 최대유율 24 l/min의 HUSKY S-200 펌프에 의한 시험결과 JETPAC 펌프에 비해 1.13~3.47 배의 절단심도를 보였다

  • PDF

A Study on Polishing of Grooved Surface by the Second-Generation Magnetic Abrasive Polishing (2 세대 자기연마를 이용한 미세 그루브형상 표면가공에 관한 연구)

  • Kim, Sang-Oh;Lee, Sung-Ho;Kawk, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1641-1646
    • /
    • 2011
  • The second-generation magnetic abrasive polishing is one of the nontraditional machining technologies newly developed. Because of the flexibility effect in magnetic abrasive polishing, the precise and mirror like surface can be obtained during this process. In this study, magnetic abrasive polishing process was applied in small grooved surface. As a result, it was seen that the flexible magnetic abrasive tool was effective to remove burrs on the edge of the groove. However, the efficiency of magnetic abrasive polishing at the slot was very low according to increasing depth and width of slot. So, correlation between geometric parameters, such as the depth and width, and surface roughness was evaluated and the minimum width for suitable polishing was found by experimental results.

Improvement of Chip Thickness Model in 2-flutes Slot End Milling (2날 엔드밀 슬롯 가공시 칩두께 모델의 개선)

  • Lee Dong-Kyu;Lee Ki-Yong;Lee Kune-Woo;Oh Won-Zin;Kim Jeong-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2005
  • Generally, cutting force models use a sin function method to calculate chip thickness. In slot end milling, the error from a sin function method is much bigger than other machining because a tool rotation angle in cutting is much larger. Thus in this paper, a new method to calculate chip thickness was suggested and evaluated. In a new method, tool position data according to tool rotation are checked and stored so that it is possible correct chip thickness is calculated. Cutting force waveforms simulated from a sin function method and a new method and measured waveforms from experiments were compared and error percentages were obtained. Finally, a new method had good results for simulating cutting force in slot end milling.

Machining Error Compensation for Tool Deflection in Micro Slot-Cutting Processes for Fabrication of Micro Shapes (미세형상 가공을 위한 Micro Slot 가공에서의 공구변형에 의한 가공오차 보상)

  • Sohn, Jong-In;Yoon, Gil-Sang;Seo, Tae-Il
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • Micro end-milling has been becoming an important machining process to manufacture a number of small products such as micro-devices, bio-chips, micro-patterns and so on. Despite the importance of micro end-milling, many related researches have given grand efforts to micro end-milling phenomenon, for example, micro end-milling mechanism, cutting force modeling and machinability. This paper strongly concerned actual problem, micro tool deflection, which causes excessive machining errors on the workpiece. To solve this problem, machining error prediction method was proposed through a series of test micro cutting and analysis of their SEM images. An iterative algorithm was applied in order to obtain corrected tool path which allows reducing machining errors in spite of tool deflection. Experiments are carried out to validate the proposed approaches. In result, remarkable error reduction could be obtained.

77-GHz Slot Array Antenna Using PCB and ACF (PCB와 ACF를 이용한 77 GHz 슬롯 배열 안테나)

  • Yoon, Pyoung-Hwa;Kwon, Oh-Yun;Song, Reem;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.752-757
    • /
    • 2018
  • This study presents the performance evaluation results of a 77-GHz waveguide slot array antenna that was fabricated by attaching a patterned printed circuit board(PCB) on a metal block. The 77-GHz waveguide was divided into a top plate and a bottom structure. The top plate was fabricated using a patterned PCB that can implement a fine slot at low cost. The top cover was then bonded to the bottom metal structure with a waveguide trough using anisotropic conductive film. For evaluating the antenna performance, a $1{\times}16$ slot array antenna was fabricated using our proposed method and the gain and pattern were measured and compared with the simulation results. Though the measurement results demonstrate a reduction in gain of around 2.3~3.5 dB compared to the simulation results assuming ideal bonding conditions, the pattern hardly changed and the slot antenna with a gain of approximately 17 dBi at 77 GHz can be easily manufactured at a low cost using the proposed method.

A Statistical Analysis for Slot-die Coating Process in Roll-to-roll Printed Electronics (롤투롤 슬롯-다이 대면적 코팅 공정 최적화를 위한 통계적 모델링 방법)

  • Park, Janghoon;Lee, Changwoo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.23-29
    • /
    • 2013
  • Recent advances in printing technology have increased the productivity of the roll-to-roll (R2R) printing process for printed circuitry. In the R2R printed electronics, characteristics of printed and coated layers are one of the most important issues that determine the functional quality of final products. The slot-die technology can coat a large area with high uniformity using low-viscosity materials; determining the process parameters is important to obtain excellent coating qualities. In this study, a viscocapillary model was used to predict qualities of coated layers and patterns. On the basis of analysis results, a novel meta model was derived using design of experiment methodology to improve accuracy. Sensitivity analysis was performed to define major parameters in R2R slot-die coating process. The coating speed was found to most significantly affect the coated layer thickness and was easily controlled. The performance of the proposed model is verified through experimental studies. Based on the statistical analysis results, R2R slot die process can be optimized to guarantee a desired thickness.