• 제목/요약/키워드: 슬러지탄화

Search Result 59, Processing Time 0.03 seconds

Characteristics of Anaerobic Biodegradability in Hydro-thermal Hydrolysate of Sewage Sludge (하수 슬러지 수열탄화액의 혐기적 유기물 분해 특성 연구)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.35-45
    • /
    • 2017
  • In order to improve the anaerobic digestion efficiency of the sewage sludge, the methane potential of the hydrolysate generated from the hydro-thermal reaction at 170, 180, 190, 200, 210, $220^{\circ}C$ was analyzed and the constitutional characteristics of the organic materials were estimated by dividing organic materials of hydro-thermal hydrolysate into easily biodegradable, decomposition resistant, and non-biodegradable organic materials applying the parallel first order kinetics model. The ultimate methane potential of sewage sludge hydro-thermal hydrolysate increased to 0.39, 0.39, 0.40, 0.44, 0.45, and $0.46Nm^3/kg-VS_{added}$ as hydro-thermal reaction temperature increased from 170, 180, 190, 200, 210, $220^{\circ}C$. It has been shown that the organic matter of sewage sludge is solubilized to increase the content of biodegradable organic material($VS_B$). The easily degradable organic matter($VS_e$) content was highest at hydro-thermal reaction temperature of 200 and $210^{\circ}C$, and optimum hydro-thermal reaction temperature for organic matter solubilization of sewage sludge was in the range of $200{\sim}210^{\circ}C$. In addition, the amount of biodegradable organic material($VS_B$) and easily biodegradable organic matter ($VS_e$) in the hydrolysate of sewage sludge was the highest at hydro-thermal reaction temperature of $200^{\circ}C$.

Study on Adsorption of Pb and Cd in Water Using Carbonized Water Treatment Sludge (탄화 정수 슬러지를 이용한 수중의 납과 카드뮴 흡착에 관한 연구)

  • Kim, Younjung;Kim, Daeik;Choi, Jong-Ha;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.5
    • /
    • pp.238-243
    • /
    • 2017
  • In this study, water treatment sludge carbonized with $400^{\circ}C$ was tested as an adsorbent for the removal of Pb and Cd in water. The carbonized sludge was characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), and surface area analysis. Carbonized sludge exhibited much higher specific surface area and total pore volume than water treatment sludge itself. In batch-type adsorption process, carbonized sludge represented better adsorption performance for Pb than Cd, achieving 90~98% at the concentrations conducted in the experiments. Equilibrium data of adsorption were analyzed using the Freundlich and Langmuir isotherm models. It was seen that both Freundlich and Langmuir isotherms have correlation coefficient $R^2$ value larger than 0.95. The results of studies indicated that carbonized water treatment sludge by heat treatment could be used as an efficient adsorbent for the removal of Pb and Cd from water.

Synthesis of High-purity Silicon Carbide Powder using the Silicon Wafer Sludge (실리콘 기판 슬러지로부터 고순도 탄화규소 분말 합성)

  • Hanjung Kwon;Minhee Kim;Jihwan Yoon
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.60-65
    • /
    • 2022
  • This study presents the carburization process for recycling sludge, which was formed during silicon wafer machining. The sludge used in the carburization process is a mixture of silicon and silicon carbide (SiC) with iron as an impurity, which originates from the machine. Additionally, the sludge contains cutting oil, a fluid with high viscosity. Therefore, the sludge was dried before carburization to remove organic matter. The dried sludge was washed by acid cleaning to remove the iron impurity and subsequently carburized by heat treatment under vacuum to form the SiC powder. The ratio of silicon to SiC in the sludge was varied depending on the sources and thus carbon content was adjusted by the ratio. With increasing SiC content, the carbon content required for SiC formation increased. It was demonstrated that substoichiometric SiCx (x<1) was easily formed when the carbon content was insufficient. Therefore, excess carbon is required to obtain a pure SiC phase. Moreover, size reduction by high-energy milling had a beneficial effect on the suppression of SiCx, forming the pure SiC phase.

Solid Fuel Carbonization Characteristics through Hydrothermal Carbonization of Sewage Sludge (하수슬러지의 수열탄화를 통한 고형연료 탄화 특성)

  • Seong Kuk Han;Moonil Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.53-61
    • /
    • 2023
  • Most of the sewage sludge is organic waste containing a large amount of organic substances decomposable by microorganisms by biological treatment. As for existing sewage sludge treatment methods, reduction and fuel conversion are being carried out using technologies such as drying, incineration, torrefaction, carbonization. However, the disadvantage of high energy consumption has been pointed out as latent heat of 539 kcal/kg is consumed based on drying. Therefore, in this study, we intend to produce solid fuel through hydrothermal carbonization(HTC), which is a thermochemical treatment. To evaluate the value of solid fuel, the characteristics of carbonization and fuel ratio were analyzed. As a result, as the hydrothermal carbonization reaction temperature increased, the lower heating value also increased by about 500 kcal/kg due to the increase in the degree of carbonization. H/C, O/C, ratio showed a decreasing trend from 1.78, 0.46 to 1.57, 0.32. When the ratio of ash to combustible content (fixed carbon + volatile) of dry sludge was 0.25 or more, it was derived that the degree of carbonization and calorific value did not increase even when hydrothermal carbonization was performed.

An Energy Characteristics of Carbonization Residue produced from Sewage Sludge Cake (하수슬러지 케익으로부터 생산한 탄화물의 에너지 특성)

  • Rhee, Seung-Whee
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • Sewage sludge cake(SSC) is seriously concerned because ocean dumping, which is the cheapest treatment method now, will be banned in 2012. On the basis of this reason, recycling of SSC is emphasized to convert the treatment method. One of the method to recycling SSC could be carbonization process which also can be reduced greenhouse gas effectively. And carbonization residue of SSC produced by carbonization process can become a renewable energy source. However, carbonization process has not been evaluated by considering basic operating data such as heating value, yield and fuel ratio. In this study, the basic characteristics of SSC such as proximate analysis, elementary analysis and heating value are analyzed. In carbonization process, the effect of carbonization temperature and time on the residue of SSC are estimated. And the analysis is carried out to obtain basic properties of the residue of SSC. From the result of chemical composition of SSC residue, there is 27% of phosphate in SSC. Phosphate will take a role of reductant to convert from hazardous substance to non-hazardous material. As increased carbonization temperature and time, heating value and yield are decreased but fuel ratio(fixed carbon/volatile combustible) of the residue is increased. In the carbonization process, the optimum temperature and time in carbonization test for SSC can be decided by $250^{\circ}C$ and 15 min, respectively. However, the carbonization residue of SSC can not be deserved to use one of renewable energy sources because the heating value at the optimum condition is relatively low. Hence, it is desirable that SSC can be mixed with other organic waste to carbonize.

A Study on Torrefaction Characteristics of Sewage Sludge (하수슬러지의 반탄화 특성에 관한 연구)

  • Lim, Dae-Won;Poudel, Jeeban;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.510-514
    • /
    • 2014
  • In this work, the effect of torrefaction on the basic characteristic of sewage sludge was studied to evaluate the energy potential as a solid fuel. Torrefaction experiments were performed at temperatures of $150{\sim}600^{\circ}C$. The torrefied sewage sludge was characterized by the energy yield, ash content, volatile fraction and high heating value (HHV). The gaseous products from torrefaction of the sewage sludge were also analyzed. Thermogravimetric analysis was carried out for the kinetic analysis of sewage sludge torrefaction. From this work, it was found that the ash content increased with an increase of the torrefaction temperature while the energy yield, HHV and volatile fraction decreased. It was also found that the emission of carbon monoxide and hydrocarbon gases started at $300^{\circ}C$ by the thermal degradation of volatile components in the sewage sludge.

A Study on Drying and Carbonization of Organic Sludge from Sewage Plant and Petrochemical Industries for Energy and Resources Recovery (하수슬러지 및 석유화학산업단지 폐수슬러지의 에너지화와 재활용을 위한 건조 및 탄화에 관한 연구)

  • Jun, Kwan-Soo;Hwang, Eung-Ju;Kim, Hyung-Jin
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.154-164
    • /
    • 2009
  • In 2007, 94% of organic wastewater sludge from industries located in Ulsan was disposed of by ocean dump. The ocean dump of organic sludge would be totally prohibited by the year of 2012. However, there is no alternative but incinerating the sludge from the industries located in Ulsan. Securing the technology for sludge treatment and on-land disposal is very important issue among the industries in the Ulsan Petrochemical Industry Complex. In this study, the material aspects of dried and carbonized sludge as a fuel were evaluated for petrochemical and sewage sludge from Ulsan. The dried and carbonized sludges from the factories producing terephthalic acid, BTX, propylene, chemical textile, etc. of which the low heat value exceeded 3,000 kcal/kg had high potential as a fuel according to the results of thermal characteristic analysis. However, the dried sludges with heat values lower than 2,100 kcal/kg and carbonized sludges, lower than 1,100 kcal/kg containing more Inorganic material from the industries producing pulp, paper, methylamine, amide, etc. had a little potential to be used as a fuel. In most cases, drying the sludge showed better results than carbonization in the aspect of thermal characteristics of sludge.

Influence of Effluent from a Sludge Carbonization Facility on Wastewater Treatability (슬러지탄화공정수 연계처리가 하수처리효율에 미치는 영향)

  • Han, Joo Eun;Park, Soo-Hyung;Lee, Wontae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.57-64
    • /
    • 2019
  • We investigated influence of connected influent on the treatability of a wastewater treatment plant (WWTP), recently accepting effluent from a sludge carbonization facility. Based upon the pollutant loading rates (kg/d) of each connected influent, food waste leachate and livestock wastewater contributed to high BOD and COD loadings, while sludge carbonization facility effluent certainly contributed to T-N and $NH_3-N$ loadings. The nitrification rate in aerobic tank decreased to 55% with the carbonization facility effluent entering to the WWTP, while it was 89% with no carbonization facility effluent entering. The sludge carbonization facility effluent may need to be pretreated to reduce T-N and $NH_3-N$ loadings before entering to the WWTP for further treatment.

Mechanical Properties of Non-cement Matrix Utilizing the Circulating Fluidized Bed Combustion Boiler Fly Ash and Dyeing Sludge Carbide (염색슬러지 탄화물과 순환 유동층 연소 보일러 플라이애시를 활용한 무시멘트 경화체의 역학적 특성)

  • Kim, Tae-Hyun;Lee, Seung-Ho;Lee, Yong;Shin, Jin-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Both rapid industrial development and society has achieved more comfortable life. But, behind this facts of this industrial development have current pictures that occur global warming and much more by-products by environmental pollution. Therefore, this study used BFS and CFA as by-products to reduce cement usage emitted at a high rate of $CO_2$ gas, to examine sludge recycling strategy more than 200,000ton emitted at local dyeing complex, we suggest basic data research about non-cement matrix properties of utilizing dyeing sludge carbide. As a result, the more dyeing sludge carbide replacement ratio gets higher, the more air content and flow rise. Also, as the dyeing sludge carbide replacement ratio increase more, flexural strength and compressive strength go down.

A Study on the Drying and Carbonization of Sewage Sludge in Fluidized Bed Reactor (유동층 반응기에서 하수슬러지의 건조 및 탄화 특성에 관한 연구)

  • Choung, Young-Hean;Cho, Ki-Chul;Kang, Dong-Hyo;Kim, Yi-Kwang;Park, Chang-Woong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.746-751
    • /
    • 2006
  • In this study, drying and carbonization experiment was conducted in a fluidized bed reactor according to the variations in gas velocity, particle size, and reactor temperature. As a result, the weight loss rates of sludge by drying in the fixed bed and fluidized bed type dryer showed that drying in the fluidized bed was about 6 times faster than drying in the fixed bed, and the weight loss rates of sludge by carbonization in the fixed bed and fluidized bed type reactor showed that carbonization in the fluidized bed was about 4 times faster than drying in the fixed bed. This implies that carbonization in the fluidized bed was completed within 10 minutes. Although the amount of char decreased with the increase of carboniration temperature, the amount of char became similar at upper 873K. Also, the amount of char decreased with increasing gas velocity. Consequently, it could be efficient that slow fluidization should be maintained within the range of fluidization in case of fluidized carbonization of sewage sludge at 873K.