• Title/Summary/Keyword: 슬러지소화

Search Result 211, Processing Time 0.028 seconds

A Study on Environmental and Economic Analysis for Each Treatment of Sewage Sludge(II) - Results of Economic Analysis - (하수슬러지 처리방법별 환경성 및 경제성 분석에 대한 연구(II) - 경제성 분석 중심으로 -)

  • Lee, Dongjin;Lee, Suyoung;Kwon, Younghyun;Cho, Yuna;Bae, Jisu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.15-29
    • /
    • 2016
  • This study investigated the environmental and economical assessment for sewage sludge treatment options including biogasification, incineration, carbonization, drying, and solidification. Considering B/C ratio for an anaerobic digestion treatment, for $270,000m^3/d$ (over $1,150m^3/day$), B/C was 1, as the moisture content increased to 95 %, B/C was 1 for $100000m^3/d$ (capacity of $400m^3/day$). Anaerobic digestion+solidification was the most economically feasible, then Anaerobic digestion+incineration and anaerobic digestion+drying were the next economically feasible and then anaerobic digestion+carbonization was the least economically feasible. If anaerobic digestion efficiency was improved to 45%, the treatment costs for anaerobic digestion+carbonization, anaerobic digestion+incineration and anaerobic digestion+drying were decreased to 3,000~5,000 won/t and the costs for anaerobic digestion+solidification was decreased to 2,000~3,000 won/t due to increasing of the beneficial cost of the biogas production.

Mixture treatment of food waste and sewage sludge using pilot scale anaerobic digester (Pilot scale 2단 혐기성 소화조를 이용한 음식물쓰레기와 하수슬러지의 혼합처리)

  • Park, Nam-bae;Lee, Heon-Mo;Lee, Byung-Heon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.47-55
    • /
    • 1999
  • Recently, the treatment of that wastes according to increase of food waste has been a great problem of modern society for long time. This study was aimed to evaluate possibility for food waste and sewage sludge mixture treatment using pilot scale two-phase anaerobic digester. Pilot scale two-phase anaerobic digestion system was performanced at 1 : 9 mixture ratio of food waste and sewage sludge infield. The detention time of digester was 20days. The average COD and VS removal efficiencies in organic loading rate $3.03kg\;TCOD/m^3-day$ were 57.7 and 47.7%, and the gas production rate and methane content were $0.4m^3/kg$ VS-day and 65.3%, respectively. TS, VS and VS/TS(%) of mixing tank were 4.44%, 2.59% and 58.34%, respectively and TS. VS and VS/TS(%) of digester in steady state were 3.32%, 1.39% and 41.90%, respectively, Through this study. it was possible to accomplish effective mixture treatment of the sewage sludge and food waste.

  • PDF

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.

Waste Activated Sludge Digestion with Thermophilic Attached Films (친열성(親熱性) 생물막공법(生物膜工法)을 이용(利用)한 폐활성(廢活性) 슬러지의 혐기성(嫌氣性) 소화(消化))

  • Han, Ung Jun;Kabribk, R.M.;Jewell, W.J.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.31-44
    • /
    • 1985
  • The application of anaerobic attached microbial films in the expanded bed process has recently been examined at high temperatures ($55^{\circ}C$) and with particulate matter. Extrapolation of the kinetics suggested that waste activated sludge (WAS) could be efficiently digested at hydraulic retention times as short as six hours in the expanded bed process. This would represent a 99 percent digester reactor volume reduction and would introduce interesting solids management alternatives if such a high rate process were developed. This paper presents a summary of a 1.5 year study of the feasibility of such a process. Three continuously fed $55^{\circ}C$ laboratory reactor systems were used to define the kinetics and the site of reactions-control completely mixed reactors were compared to the expanded beds (AAFEB) with and without a hydrolysis unit preceding the attached film unit. Well defined laboratory-generated WAS was compared to actual WAS from a domestic sewage treatment facility. Sixty percent of the biodegradable organics were converted in an AAFEB at a 15-hour hydraulic retention time without hydrolysis, whereas greater than 95 perccent of the biodegradable organics were stabilized in a two-stage system consisting of a 3-day HRT hydrolysis reactor followed by a 15-hour HRT AAFEB. The limitations of this high rate process and its potential application are discussed.

  • PDF

Pretreatment of Waste-activated Sludge for Enhancement of Methane Production (메탄발효 효율향상을 위한 하.폐수 슬러지의 전처리 기술)

  • NamKung, Kyu-Cheol;Jeon, Che-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • Although different disposal routes of waste-activated sludge are possible, anaerobic digestion plays an important role for its abilities to further transform organic matter into methane. The potential of using methane as energy source has long been widely recognised and the present paper extensively reviews the principles of anaerobic digestion, the process parameters and hydrolysis. Hydrolysis is recognised as rate-limiting step in the complex digestion process. To accelerate the digestion and enhance the production of biogas, various pre-treatments can be used to improve the rate-limiting hydrolysis. These treatments include mechanical, thermal, chemical and biological interventions to the feedstock. All pre-treatments result in a lysis or disintegration of sludge cells, thus releasing and solubilizing intracellular material into the water phase and transforming refractory organic material into biodegradable species. The reader will finally be guided to extensive discussion for anaerobic digestion processes.

Technology Development of Return Flow Treatment from Sludge Processing (슬러지 공정 반류수 처리 기술 개발)

  • 김선구;장윤석;박명균;박미경;허용록;최의소;윤주환;길경익
    • Environmental engineer
    • /
    • s.175
    • /
    • pp.56-62
    • /
    • 2001
  • 하수처리장의 농축-소화-탈수 등 전형적인 슬러지처리 공정에서 발생하는 소화조, 농축조 상징액 및 탈리여액 등의 반류수는 유량은 적으나 고농도로써 처리장의 전체 처리효율에 심각한 영향을 주는 것으로 알려져 있는데 외국에서는 이미 반류수의 농도를 감소시키며, 또한 발생된 반류수를 효과적으로 처리하기 위한 기술개발에 대한 광범위한 연구가 활발히 진행되고 있다. 이는 반류수 내 고농도의 질소를 제거하면 기존 처리장에서도 상당한 수준의질소 제거가 가능하다는 판단

  • PDF

Effect of Sonification on the Ananerobic Digestion of Waste Activated Sludge(I) -Disintegration of Waste Activated Sludge Using Ultrasonic and Alkaline Pre-treatments- (초음파가 폐활성 슬러지의 혐기성 소화에 미치는 영향(I) -초음파 및 알칼리 전처리를 이용한 폐활성 슬러지의 가용화-)

  • Han, Sun-Kee;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.96-102
    • /
    • 2009
  • The effect of ultrasonic and alkaline pre-treatments on waste activated sludge (WAS) disintegration was investigated for improved anaerobic digestion. As WAS was treated by either methods, longer capillary suction time (CST) was required due to the break-up of cell walls, and its supernatant demonstrated increase in soluble chemical oxygen demand (SCOD), protein content and turbidity. Ultrasonic process combined with alkaline pre-treatment demonstrated higher SCOD and protein content in the supernatant as compared with ultrasonic pre-treatment only. However, the degree of disintegration (DDCOD) of WAS decreased with increasing solid concentration as both WAS disintegration methods employed simultaneously.

  • PDF

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

Pre-Treatment of Sewage Sludge by Hydrodynamic Cavitation-II: Enhancement of Digestion Efficiency (수리동력학적 캐비테이션을 이용한 하수 슬러지의 전처리-II: 소화효율 향상)

  • Maeng, Jang-Woo;Lee, Eun-Young;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.264-270
    • /
    • 2010
  • Waste activated sludge from sewage treatment plants mainly consisted of flocs of bacterial cell, and thus hard to be stabilized anaerobically due to rigid cell walls. One of the pretreatment methods to overcome this barrier is the venturi cavitation system (VCS) adopting hydrodynamic cavitation. This research was conducted to investigate the effects of the pretreatment of waste activated sludge by VCS on the anaerobic digestibility. Depending on the pretreatment period with the VCS, methane production, COD removal and VS removal efficiency increased 41%~45%, 36.5%~43.1% and 18.4~24.1%, respectively, compared to the control case. The increase in methane production from digester was 3.3~4.2 times higher than the theoretical methane potential of the increased SCOD after the VCS pre-treatment. This suggests that the VCS pre-treatment not only increases SCOD but also improves the digestibility of solid fractions. The energy mass balance indicated that the energy consumed for sludge pre-treatment could be recovered by the increased methane production after pre-treatment, suggesting the high potential for field application.

Effect of Wet Milling on Scum Generation and Solubilization in Batch Ozone Reaction Using Digested Sludge (소화슬러지를 이용한 회분식 오존반응 시 습식분쇄가 스컴 생성과 가용화에 미치는 영향)

  • Hong, Seong-Min;Lee, Dong-Hoon;Kim, Choong-Gon;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.13-18
    • /
    • 2019
  • Sewage sludge treatment is increasing every year due to improvement of living and urbanization. However, interest in anaerobic digestion which is one of the recycling technology. There is anaerobic digestion of increasing due to limitations of ocean dumping and final disposal. But, the limit of anaerobic digestion efficiency due to the advanced treatment of sewage has been limited, and studies for solubilization technology have been actively conducted. Therefore, in this study, we aimed to investigate the variation of generation of scum and the solubilization efficiency in the application of pre-treatment of ozone reaction and the change of properties of digested sludge with wet milling. There are results of VS/TS increased by 4.4% and $SCOD_{cr}/TCOD_{cr}$ increased by 9.4% by wet milling alone. In addition, the increase of the specific surface area due to which the reduction of the particle size of the solid content of the sludge in the ozone reaction caused by wet milling decreased the generation rate of scum at 14.3% and increased VS/TS at 2.1%, compared with the ozone reaction alone. From these results, it is expected that the application of wet milling can be increased the contact efficiency with solids in the sludge during ozone reaction with suppress scum and increase the efficiency of the subsequent process in anaerobic digestion.