• Title/Summary/Keyword: 슬라이딩 윈도우 기법

Search Result 79, Processing Time 0.032 seconds

Implementation of an Efficient Requirements Analysis supporting System using Similarity Measure Techniques (유사도 측정 기법을 이용한 효율적인 요구 분석 지원 시스템의 구현)

  • Kim, Hark-Soo;Ko, Young-Joong;Park, Soo-Yong;Seo, Jung-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.1
    • /
    • pp.13-23
    • /
    • 2000
  • As software becomes more complicated and large-scaled, user's demands become more varied and his expectation levels about software products are raised. Therefore it is very important that a software engineer analyzes user's requirements precisely and applies it effectively in the development step. This paper presents a requirements analysis system that reduces and revises errors of requirements specifications analysis effectively. As this system measures the similarity among requirements documents and sentences, it assists users in analyzing the dependency among requirements specifications and finding the traceability, redundancy, inconsistency and incompleteness among requirements sentences. It also extracts sentences that contain ambiguous words. Indexing method for the similarity measurement combines sliding window model and dependency structure model. This method can complement each model's weeknesses. This paper verifies the efficiency of similarity measure techniques through experiments and presents a proccess of the requirements specifications analysis using the embodied system.

  • PDF

A Dual Processing Load Shedding to Improve The Accuracy of Aggregate Queries on Clustering Environment of GeoSensor Data Stream (클러스터 환경에서 GeoSensor 스트림 데이터의 집계질의의 정확도 향상을 위한 이중처리 부하제한 기법)

  • Ji, Min-Sub;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • u-GIS DSMSs have been researched to deal with various sensor data from GeoSensors in ubiquitous environment. Also, they has been more important for high availability. The data from GeoSensors have some characteristics that increase explosively. This characteristic could lead memory overflow and data loss. To solve the problem, various load shedding methods have been researched. Traditional methods drop the overloaded tuples according to a particular criteria in a single server. Tuple deletion sensitive queries such as aggregation is hard to satisfy accuracy. In this paper a dual processing load shedding method is suggested to improve the accuracy of aggregation in clustering environment. In this method two nodes use replicated stream data for high availability. They process a stream in two nodes by using a characteristic they share stream data. Stream data are synchronized between them with a window as a unit. Then, processed results are merged. We gain improved query accuracy without data loss.

Efficient Processing of Multidimensional Sensor stream Data in Digital Marine Vessel (디지털 선박 내 다차원 센서 스트림 데이터의 효율적인 처리)

  • Song, Byoung-Ho;Park, Kyung-Woo;Lee, Jin-Seok;Lee, Keong-Hyo;Jung, Min-A;Lee, Sung-Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5B
    • /
    • pp.794-800
    • /
    • 2010
  • It is necessary to accurate and efficient management for measured digital data from various sensors in digital marine vessel. It is not efficient that sensor network process input stream data of mass storage stored in database the same time. In this paper, We propose to improve the processing performance of multidimensional stream data continuous incoming from multiple sensor. We propose that we arrange some sensors (temperature, humidity, lighting, voice) and process query based on sliding window for efficient input stream and found multiple query plan to Mjoin method and we reduce stored data using SVM algorithm. We automatically delete that it isn't necessary to the data from the database and we used to ship diagnosis system for available data. As a result, we obtained to efficient result about 18.3% reduction rate of database using 35,912 data sets.

A Method for Estimating Local Intelligibility for Adaptive Digital Image Decimation (적응형 디지털 영상 축소를 위한 국부 가해성 추정 기법)

  • 곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.391-397
    • /
    • 2003
  • This paper is about the digital image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element.

  • PDF

Determining Method of Factors for Effective Real Time Background Modeling (효과적인 실시간 배경 모델링을 위한 환경 변수 결정 방법)

  • Lee, Jun-Cheol;Ryu, Sang-Ryul;Kang, Sung-Hwan;Kim, Sung-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.1
    • /
    • pp.59-69
    • /
    • 2007
  • In the video with a various environment, background modeling is important for extraction and recognition the moving object. For this object recognition, many methods of the background modeling are proposed in a process of preprocess. Among these there is a Kumar method which represents the Queue-based background modeling. Because this has a fixed period of updating examination of the frame, there is a limit for various system. This paper use a background modeling based on the queue. We propose the method that major parameters are decided as adaptive by background model. They are the queue size of the sliding window, the sire of grouping by the brightness of the visual and the period of updating examination of the frame. In order to determine the factors, in every process, RCO (Ratio of Correct Object), REO (Ratio of Error Object) and UR (Update Ratio) are considered to be the standard of evaluation. The proposed method can improve the existing techniques of the background modeling which is unfit for the real-time processing and recognize the object more efficient.

HummingBird: A Similar Music Retrieval System using Improved Scaled and Warped Matching (HummingBird: 향상된 스케일드앤워프트 매칭을 이용한 유사 음악 검색 시스템)

  • Lee, Hye-Hwan;Shim, Kyu-Seok;Park, Hyoung-Min
    • Journal of KIISE:Databases
    • /
    • v.34 no.5
    • /
    • pp.409-419
    • /
    • 2007
  • Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.

Developing a Trading System using the Relative Value between KOSPI 200 and S&P 500 Stock Index Futures (KOSPI 200과 S&P 500 주가지수 선물의 상대적 가치를 이용한 거래시스템 개발)

  • Kim, Young-Min;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.33 no.1
    • /
    • pp.45-63
    • /
    • 2014
  • A trading system is a computer trading program that automatically submits trades to an exchange. Mechanical a trading system to execute trade is spreading in the stock market. However, a trading system to trade a single asset might occur instability of the profit because payoff of this system is determined a asset movement. Therefore, it is necessary to develop a trading system that is trade two assets such as a pair trading that is to sell overvalued assets and buy the undervalued ones. The aim of this study is to propose a relative value based trading system designed to yield stable and profitable profits regardless of market conditions. In fact, we propose a procedure for building a trading system that is based on the rough set analysis of indicators derived from a price ratio between two assets. KOSPI 200 index futures and S&P 500 index futures are used as a data for evaluation of the proposed trading system. We intend to examine the usefulness of this model through an empirical study.

  • PDF

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Index-based Searching on Timestamped Event Sequences (타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색)

  • 박상현;원정임;윤지희;김상욱
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.468-478
    • /
    • 2004
  • It is essential in various application areas of data mining and bioinformatics to effectively retrieve the occurrences of interesting patterns from sequence databases. For example, let's consider a network event management system that records the types and timestamp values of events occurred in a specific network component(ex. router). The typical query to find out the temporal casual relationships among the network events is as fellows: 'Find all occurrences of CiscoDCDLinkUp that are fellowed by MLMStatusUP that are subsequently followed by TCPConnectionClose, under the constraint that the interval between the first two events is not larger than 20 seconds, and the interval between the first and third events is not larger than 40 secondsTCPConnectionClose. This paper proposes an indexing method that enables to efficiently answer such a query. Unlike the previous methods that rely on inefficient sequential scan methods or data structures not easily supported by DBMSs, the proposed method uses a multi-dimensional spatial index, which is proven to be efficient both in storage and search, to find the answers quickly without false dismissals. Given a sliding window W, the input to a multi-dimensional spatial index is a n-dimensional vector whose i-th element is the interval between the first event of W and the first occurrence of the event type Ei in W. Here, n is the number of event types that can be occurred in the system of interest. The problem of‘dimensionality curse’may happen when n is large. Therefore, we use the dimension selection or event type grouping to avoid this problem. The experimental results reveal that our proposed technique can be a few orders of magnitude faster than the sequential scan and ISO-Depth index methods.hods.