• Title/Summary/Keyword: 스피커 특성

Search Result 193, Processing Time 0.021 seconds

Analysis of User Experience and Usage Behavior of Consumers Using Artificial Intelligence(AI) Devices (인공지능(AI) 디바이스 이용 소비자의 사용행태 및 사용자 경험 분석)

  • Kim, Joon-Hwan
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • Artificial intelligence (AI) devices are rapidly emerging as a core platform of next-generation information and communication technology (ICT), this study investigated consumer usage behavior and user experience through AI devices that are widely applied to consumers' daily lives. To this end, data was collected from 600 consumers with experience in using AI devices were derived to recognize the attributes and behavior of AI devices. The analysis results are as follows. First, music listening was the most used among various attributes and it was found that simple functions such as providing weather information were usefully recognized. Second, the main devices used by AI device users were identified as AI speakers, smartphone, PC and laptops. Third, associative images of AI devices appeared in the order of fun, useful, novel, smart, innovative, and friendly. Therefore, practical implications are suggested to contribute to provision of user services using AI devices in the future by analyzing usage behaviors that reflect the characteristics of AI devices.

A Study on portable voice recording prevention device (휴대용 음성 녹음 방지 장치 연구)

  • Kim, Hee-Chul
    • Journal of Digital Convergence
    • /
    • v.19 no.7
    • /
    • pp.209-215
    • /
    • 2021
  • This study is a system development for voice information protection equipment in major meetings and places requiring security. Security performance and stability were secured with information leakage prevention technology through generation of false noise and ultrasonic waves. The cutoff frequency band for blocking the leakage of voice information, which has strong straightness due to the nature of the radio wave to the recording prevention module, blocks the wideband frequency of 20~20,000Hz, and the deception jamming technology is applied to block the leakage of voice information, greatly improving the security. To solve this problem, we developed a system that blocks the recording of a portable smartphone using a battery, and made the installation of a separate device smaller and lighter so that customers do not recognize it. In addition, it is necessary to continuously study measures and countermeasures for efficiently using the output of the anti-recording speaker for long-distance recording prevention.

Shape Oscillation and Detachment of Droplet on Vibrating Flat Surface (진동하는 평판 위의 액적의 형상 진동 및 제거 조건에 대한 연구)

  • Shin, Young-Sub;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.337-346
    • /
    • 2014
  • This study aimed to understand the mode characteristics of a droplet subject to periodic forced vibration and the detachment of a droplet placed on a plate surface. An surface was coated with Teflon to clearly observe the behavior of a droplet. The contact angle between the droplet and surface and the hysteresis were found to be approximately $115^{\circ}C$ and within $25^{\circ}C$, respectively. The coating process was performed in a clean room that had an environment with a low level of contaminants and impurities such as air dust, detergents, and particles. To predict the resonance frequency of a droplet, theoretical and experimental approaches were applied. Two high-speed cameras were configured to acquire side and top views and thus capture different characteristics of a droplet: the mode shape, the detachment, the separated secondary droplet, and the waggling motion. A comparison of the theoretical and experimental results shows no more than 18 discrepancies when predicting the resonance frequency. These differences seem to be caused by contact line friction, nonlinear wall adhesion, and the uncertainty of the experiment. For lower energy inputs, the contact line of the droplet was pinned and the oscillation pattern was axisymmetric. However, the contact line of the droplet was de-pinned as the oscillation became more vigorous with increased energy input. The size of each lobe at the resonance frequency is somewhat larger than that at the neighboring frequency. A droplet in mode 2, one of the primary mode frequencies, exhibits vertical periodic movement as well as detachment and secondary ejection from the main droplet.

Transmission Noise Seduction Performance of Smart Panels using Piezoelectric Shunt Damping (압전감쇠를 이용한 압전지능패널의 전달 소음저감 성능)

  • 이중근
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.49-57
    • /
    • 2002
  • The possibility of a transmission noise reduction of piezoelectric smart panels using piezoelectric shunt damping is experimentally studied. Piezoelectric smart panel is basically a plate structure on which piezoelectric patch with shunt circuits is mounted and sound absorbing materials are bonded on the surface of the structure. Sound absorbing materials can absorb the sound transmitted at mid frequency region effectively while the use of piezoelectric shunt damping can reduce the transmission at resonance frequencies of the panel structure. To be able to reduce the sound transmission at low panel resonances, piezoelectric damping using the measured electrical impedance model is adopted. Resonant shunt circuit for piezoelectric shunt damping is composed of register and inductor in series, and they are determined by maximizing the dissipated energy throughout the circuit. The transmitted noise reduction performance of smart panels is investigated using an acoustic tunnel. The tunnel is a tube with square crosses section and a loud-speaker is mounted at one side of the tube as a sound source. Panels are mounted in the middle of the tunnel and the transmitted sound pressure across panels is measured. Noise reduction performance of a smart panels possessing absorbing material and/or air gap shows a good result at mid frequency region but little effect in the resonance frequency. By enabling the piezoelectric shunt damping, noise reduction of 10dB, 8dB is achieved at the resonance frequencise as well. Piezoelectric smart panels incorporating passive method and piezoelectric shunt damping are a promising technology for noise reduction in a broadband frequency.

  • PDF

Selection of Scale Model Materials for Acoustical Evaluation of 1:50 Multipurpose Halls (1:50 다목적홀의 음향평가를 위한 축소모형재료의 선정)

  • Jeon, Jin-Yong;Kim, Jeong-Jun;Kim, Yong-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.8
    • /
    • pp.781-789
    • /
    • 2009
  • The absorption coefficients of the materials used in a 1:50 scale model multipurpose hall were measured based on ISO 354 and related laws. The shape and materials for the scale model were evaluated based on reflective surfaces, variable acoustic elements and sound-absorbing quality (125Hz-1kHz average) of seats. The measured average absorption coefficients of audience seats, audience and orchestra were 0.64, 0.74 and 0,45, respectively, which were simulated with the combination of wood, absorption materials and foam board. Various mounting methods for absorption curtain and banner were considered according to the installation methods. The average absorption coefficient was measured as 0.42, 0.47 and 0.45 in the conditions of Type A mounting, E mounting with 0.9 m backing air cavity, and Type G mounting which is suspended at the ceiling, respectively. It was confirmed that the absorption coefficient was increased at low frequency by backing air gap. The finishing material of stage house was an absorption material covered with thin fabric, which aimed average absorption coefficient of 0.68 by using fiber glass board. Each part of the real materials was compared with those of 1:50 scale model and it was found that the absorption characteristics of both cases were similar.

Development of Healthcare Bathing System for Improving the Multisensory Functions (복합감각 기능증진 개념의 헬스케어 목욕시스템 개발)

  • Kim, Hyung-Ji;Yu, Mi;Jin, Hea-Ryen;Kwon, Tae-Kyu
    • Science of Emotion and Sensibility
    • /
    • v.13 no.2
    • /
    • pp.309-316
    • /
    • 2010
  • This paper proposes healthcare bathing system for improving the multisensory function and not washing. We designed various types of bathtub for developing bathing system. This system consists of whirlpool bathtub for multisensory stimulation, a cover of bathtub with visual-auditory stimulation function, a small size PC for main control, touch panel, digital multimedia broadcasting (DMB), color-changeable LED mood lighting system for improving visual sensibility and speaker. We investigate the effects on autonomic nervous system during bathing with healthcare bathing system for improving the multisensory functions. To analysis physiological parameter, body temperature, blood pressure, intraocular pressure and heart rate variability (HRV) were measured before, during and after bath using healthcare bathing system. Experiments were performed on partial immersion bath and the water temperature was kept $39{\pm}0.5^{\circ}C$. The body temperature and the heart rate variability of the subject were measured every 5 minutes before, during, and after the bath. In analysis of HRV, the parasympathetic nerve increased from starting bath and decreased after 15 minutes. So the subjects felt comfortable at 15 minutes after starting bath. Blood pressure decreased to 16mmHg maximumly however pulse increased. Bath using healthcare bathing system for improving the multisensory functions affects positively the circulation of the blood. From this results, it leaves something to be desired in evaluation of serviceability and physiological analysis using the healthcare bathing system, however, we expect to analyze more clearly the relationship between the serviceability of product, physiological change and sensibility by various physiological parameters.

  • PDF

QRAS-based Algorithm for Omnidirectional Sound Source Determination Without Blind Spots (사각영역이 없는 전방향 음원인식을 위한 QRAS 기반의 알고리즘)

  • Kim, Youngeon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-103
    • /
    • 2022
  • Determination of sound source characteristics such as: sound volume, direction and distance to the source is one of the important techniques for unmanned systems like autonomous vehicles, robot systems and AI speakers. There are multiple methods of determining the direction and distance to the sound source, e.g., using a radar, a rider, an ultrasonic wave and a RF signal with a sound. These methods require the transmission of signals and cannot accurately identify sound sources generated in the obstructed region due to obstacles. In this paper, we have implemented and evaluated a method of detecting and identifying the sound in the audible frequency band by a method of recognizing the volume, direction, and distance to the sound source that is generated in the periphery including the invisible region. A cross-shaped based sound source recognition algorithm, which is mainly used for identifying a sound source, can measure the volume and locate the direction of the sound source, but the method has a problem with "blind spots". In addition, a serious limitation for this type of algorithm is lack of capability to determine the distance to the sound source. In order to overcome the limitations of this existing method, we propose a QRAS-based algorithm that uses rectangular-shaped technology. This method can determine the volume, direction, and distance to the sound source, which is an improvement over the cross-shaped based algorithm. The QRAS-based algorithm for the OSSD uses 6 AITDs derived from four microphones which are deployed in a rectangular-shaped configuration. The QRAS-based algorithm can solve existing problems of the cross-shaped based algorithms like blind spots, and it can determine the distance to the sound source. Experiments have demonstrated that the proposed QRAS-based algorithm for OSSD can reliably determine sound volume along with direction and distance to the sound source, which avoiding blind spots.

Active Noise Control in Ductilike System using Adaptive Filtering (적응필터링에 의한 덕트계의 능동소음제어)

  • 이태연;김상명;송원식;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.17-22
    • /
    • 1991
  • 최근 기계장치로부터 발생하는 소음을 감소시키는 새로운 방법으로서, 능동 적으로 소음을 제어하는 방법에 대한 연구가 활발히 진행되고 있다. 이것은 원하지 않는 소음을 그 신호의 역위상을 갖는 부가음을 이용하여 능동적으 로 감쇠시키는 방법으로서, 저주파수 대역에서 비효율적인 수동적인 방법인 소음기둥에 대한 대안으로 많은 학자들의 관심의 대상이 되어 왔다. 초기에 는 소음을 줄이기 위해 요구되는 여러가지 음향요소의 전달함수를 제어하는 데 대한 불가능성으로 인해 능동 소음제어에 대한 실질적인 발전이 지연되 어 왔으나 최근 마이크로 컴퓨터를 비롯한 전자공학의 발전으로 인해 적응 신호처리 분야가 등장하게 되었으며, 음향계의 소음을 원하는 수준까지 제어 하는 능동 소음제어의 실시간 구현이 가능하게 되었다. 그 중에서도 음이 1 차원적으로 전파한다고 볼 수 있는 길이가 긴 덕트구조물에서의 능동 소음 제어는 가장 기본적이며 현실적으로 자동차 배기계나 냉동.공조설비에 있어 서 실용적으로 적용할 수 있는 문제임 만큼 많은 연구가 이루어지고 있다. 이러한 능동 소음제어 방법을 음향계에 적용하였을 때, 부가적인 음을 발생 하는 제어용 스피커로 인해 입력마이크로폰으로의 음향궤환이 존재하고 이 에 따라 제어계가 불안정해질 수 있으며, 또한 변환기의 사용으로 인한 부가 적인 전달함수가 존재하므로 이에 대한 중요한 의미를 갖고 고려하여야 한 다. 본 연구에서는 적응 필터링 이론에 의한 소음원의 입력신호에 대한 최적 한 예측으로써 부가음을 발생시키고, 입력신호 및 제어된 출력신호간의 차인 오차를 최소화 시키도록 하는 오차적응제어법을 이용한 능동소음 제어 방법 을 제시하였다. 이와 아울러 제어계의 환경변화에 따른 파라메타의 변화에 적응적으로 응답이 가능해야 하는 적응 소음제어 시스템에서, 음향궤환과 함 께 필히 고려해야 하는 부가적인 전달함수의 영향을 고려한 능동 소음제어 에 대해 연구하였다. 경량화 추세에 따라 지반이나 케이싱이 경량이거나 유연하여 회전축과 동적으로 연성된 경우 회전축-베어링-지반으로 이루어진 2중구조의 회전축 계 동특성을 해석할 수 있는 프로그램을 개발하므로서 회전 기계류의 진동 전반에 걸친 문제점에 대한 그 원인과 현상을 명확히 분석하여 국내의 전기 계류의 보다 신뢰성있는 설계 및 제작자료를 확보하는데 기여할 수 있게 하 였다.존의 small molecular Gd-chelate에 비해 매우 큼을 알 수 있었다. MnPC는 간세포에 흡수된 후 담도계로 배출되는 간특이성 조영제임을 확인하였다. 장비 내에서 반복 시행한 평균값의 차이는 대체적으로 유의한 차이가 없었으나, 다른 장비에서 반복 시행한 장비간의 사이에는 유의한 차이가 있는 경우가 더 많았다. 따라서 , MRS 검사를 소뇌나 뇌교의 어떤 절환에 적용하기 전에 각 장비 마다 정상 기준치를 반드시 얻은 후에 이상여부를 판 정하는 것이 필수적이라고 생각된다.EX> 이상이 적절한 진단기준으로 생각되었다. $0.4{\;}\textrm{cm}^3$ 이상의 좌우 부피차를 보이는 모든 증례에서 육안적으로도 해마위축이 뚜렷이 나타났다. 결론 : MR영상을 이용한 해마의 부피측정은 해마경화증 환자의 진단에 있어 육안적인 MR 진단이 어려운 제한된 경우에만 실제적 도움을 줄 수 있는 보조적인 방법으로 생각된다.ofile whereas relaxivity at high field is not affected by τS. On the other hand, the change in τV does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field

  • PDF

Comparison on the recognition characteristic of the designer and consumer about the formative elements (디자이너와 소비자의 조형요소 인지특성 비교)

  • Min, Kyung-Taek;Heo, Seong-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.12 no.1
    • /
    • pp.97-108
    • /
    • 2009
  • In the process of product design, shaping is the process of making a substantive existence, and ultimately it generates the outcome. The process of shaping is generally led by designer's initiative work, and in this process, various formative elements are used to generate the outcome. In this research, the basic purposes are to figure out the differences of elements which generated by the differences of consumer's and designer's view in the process of shaping of the product, and the characteristics of the affective responses caused by those differences. Also, it will examine how the consumers can directly participate in the process of the shaping of the consumer-participated product, and the feasible guidelines of design in which consumers' needs can be reflected more efficiently to the process of shaping. As a result, consumers and designers have certain degree of difference of view-point about the formative element of the shape. The difference was due to subjective common ideas of design in case of designers, and in case of consumers, it was due to their immature visual understanding. There is another experiment of affective response about the shape of the product. First, I established the sensible image vocabulary based on the shape of the product. And based on the vocabulary, I carried out the same experiments to the consumers and designers.

  • PDF

Acoustic Performance Evaluation of Noise Barriers Installed Adjacent to Rails and Suggestion of Approximation Formula for the Prediction of Insertion Loss (근접 방음벽의 음향성능평가 및 삽입손실 예측을 위한 근사식의 제안)

  • Yoon, Je Won;Jang, Kang Seok;Cho, Yong Thung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.629-637
    • /
    • 2016
  • In this paper, an investigation was conducted to evaluate the acoustic performance of low height noise barriers installed adjacent to rails; an easy-to-use approximation formula was suggested for the evaluation of insertion loss (IL), instead of using the boundary element method. At first, the acoustic performance of the low height noise barriers was measured in an anechoic chamber using a scaled down model; the overall IL according to the source location was analyzed with the equivalent IL contour line. Using the measurement results obtained from the scaled down model, an approximation formula was suggested for the IL of low height noise barriers having various shapes. Also, the prediction program was validated through a comparison between the actual measurement results in the anechoic chamber and the prediction results. Finally, using the prediction program, an approximation formula for IL was suggested for the low height noise absorption barriers. Considering the frequency characteristics of the noise sources of the train, the absorptive low height noise barriers have a 'ㄱ' type shape, a height of 1.0m, and a length of 0.5m when they are installed on the structure gauge for the train.