• Title/Summary/Keyword: 스프링-백

Search Result 223, Processing Time 0.023 seconds

Springback Reduction of Multi-step Cylindrical Cup in Spinning Process. (스피닝공정에 있어서 스프링백 억제방안)

  • Park, Joong-Eon;Lee, Woo-Young;Choi, Seogou;Kim, Seung-Soo;Na, Kyoung-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

A Discussion on Measurement of Springback Ratio Using Winding Bend Rig (감아굽힘 장치를 이용한 스프링백 비의 측정에 대한 역학적 검토)

  • 김용우
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-9
    • /
    • 2001
  • To measure springback ratio of thin sheet or plate, winding bend rig is made. It bends a specimen with keeping its curva-ture constant and measure the bending angles before and after release of bending load. To check the performance of the bend rig, we calculated the bending moment by two ways which are based on simple beam theory. One is that the bending moment is calculated by using the results of bending test, and the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the other is that the moment is calculated by using the results of tensile tests. The former may entails the effect of the friction between bending pin of the rig and surface of specimen, but the latter does not contain any effects of the friction since the bending moment is obtained by using tensile tests. Never-theless, the values of the two bending moments shows the same level of bending moment, which implies that the friction does not influence on the presence of friction within the scope of the test performed in this experiment. This phenomenon is explained theoretically by using moment equilibrium.

  • PDF

Minimization of the Spring back in the Coiling Process of the Helical Steam Generator Tubes of Integral Reactor SMART (일체형원자로 SMART의 나선형 증기발생기 전열관 코일링 시 스프링백 최소화 방안)

  • Kim, Yong-Wan;Kim, Jong-In;Chang, Moon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.837-842
    • /
    • 2000
  • In the coiling process of helical steam generator tubes of integral reactor SMART, a considerable amount of spring back, which induces dimensional inaccuracy and difficulty in fabrication, has been arised. In this research, an analytical model was derived to evaluate the amount of the spring back for steam generator tubes. The model was developed on the basis of beam theory and elastic-perfectly plastic material property. This model was extended to consider the effect of plastic hardening and the effect of the tensile force on the spring back phenomena. Parametric studies were performed for various design variables of steam generator tubes in order to minimize the spring back in the design stage. A sensitivity analysis has shown that the low yield strength, the high elastic modulus, the small helix diameter, and the large tube diameter result in a small amount of the spring back. The amount of the spring back can be controlled by the selection of adequate design values in the basic design stage and reduced to an allowable limit by the application of the tensile force to the tube during the coiling process.

  • PDF

Springback Control in the Forming Processes for High-Strength Steel Sheets (고강도 강판 성형 공정의 스프링백 제어)

  • Yang WooYul;Lee SeungYeol;Keum YoungTag;Hwang JinYoung;Yoon ChiSang;Shin ChirlSoo;Cho WonSuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.08a
    • /
    • pp.35-40
    • /
    • 2003
  • In order to develope springback control technology for high-strength steel sheets, some studies have been conducted: dome stretching test, stepped s-rail forming and springback measurement, and optimally shaped initial blank design. First, to find out the formability of TRIP60, dome stretching test was performed. Next the stepped s-rail die, which was designed to form a channel type panel with large twist and wall curl, was manufactured and used to know the effect of controlling forming variables, such as blank holding force and flange amount on the springback. Furthermore, new measurement method of the springback was introduced to define wall curl and twist in geometrically complex panels. Finally, the optimally shaped initial blank was employed to verify one of the best ways to control the springback in channel type, high strength sheet panels.

  • PDF

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

Optimum design of direct spring loaded pressure relief valve in water distribution system using multi-objective genetic algorithm (다목적 유전자 알고리즘을 이용한 상수관망에서 스프링 서지 완화 밸브의 최적화)

  • Kim, Hyunjun;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.

Evaluation of Formability and Mechanical Characteristic for Hot Forming Quenching in Sheet Forming of Al6061 Alloy (Al6061 판재성형에서 핫 포밍 ��칭의 성형성 및 기계적 특성 평가)

  • Ko, Dae Hoon;Kim, Jae Hong;Lee, Chan Joo;Ko, Dae Cheol;Kim, Byung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.483-490
    • /
    • 2013
  • In aluminum sheet metal forming, the conventional forming methods of T4 or T6 heat-treated sheets result in low formability and dimensional accuracy. This study suggests a new forming method for aluminum sheets called as hot forming quenching (HFQ) that solves the problems faced in the conventional method. HFQ combines the heat treatment and forming processes through the forming die during the quenching of a solid solution. To evaluate the application of HFQ to the sheet forming of aluminum, an Erichsen and V-bending test are performed in this study to measure the dimensional accuracy and formability, which are then compared with those of the conventional forming method. Furthermore, the strength and hardness of the products formed by HFQ are measured to confirm the degradation in mechanical properties compared with the conventional forming method, which shows the validity of the application of HFQ to aluminum sheet metal forming.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.

A Simplified Approach for Predicting Springback in U-Draw Bending of Sheet Metals (U 드로오 벤딩에서의 스프링백 예측을 위한 이론적 단순화)

  • 장성호;허영무;서대교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.125-131
    • /
    • 2003
  • The U-draw bending operation is known as a representative test method for springback evaluation of sheet metals since the sheet in U-draw bending operation undergoes stretching, bending and unbending deformations occurred at read stamping process. In this study, a simplified approach was proposed for predicting springback and side-wall curls in U-draw bending operations, using moment-curvature relationships derived for sheets undergoing stretching, bending and unbending deformation.

  • PDF

Forming Analysis of a Metal Bellows (금속 벨로우즈의 성형 해석)

  • Lee, Sang-Wook
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.100-105
    • /
    • 2001
  • The manufacturing of metal bellows consists of the four main forming processes, deep-drawing, ironing, tube bulging and folding. Among these, the bulging and folding processes are critically important because the quality of metal bellows is greatly influenced by the forming conditions of these processes. In the present study, the finite element analysis technique is applied to the bulging and folding processes to obtain information about the design parameters of a metal bellows.

  • PDF