• Title/Summary/Keyword: 스프링 모델

Search Result 401, Processing Time 0.037 seconds

A comparative study on methods for shield tunnel segment lining sectional forces (쉴드 터널 세그먼트 라이닝의 부재력 산정법 비교연구)

  • Yoo, Chung-Sik;Jeon, Hun-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.159-181
    • /
    • 2012
  • The segment lining which consists of segments and joints are main component of shield tunnel. There are a number of methods that are being used in design which compute the sectional forces of a ring of segment lining. The traditional design methods which do not consider the effect of joints have been commonly used for design procedure without a specific verification of structural analysis. This paper presents the result of a comparative study for analytical and numerical models of the shield tunnel segment lining. For the traditional methods, the elastic equation method and the Duddeck & Erdmann method were considered. The ring-beam and the continuum analysis model were also considered as the numerical model.

A Study on the Fuel Assembly Stress Analysis for Seismic and Blowdown Events (지진 및 냉각재상실사고시의 핵연료집합체 응력해석에 관한 연구)

  • Kim, Il-Kon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.552-560
    • /
    • 1993
  • In this study, the detailed fuel assembly stress analysis model to evaluate the structural integrity for seismic and blowdown accidents is developed. For this purpose, as the first step, the program MAIN which identifies the worst bending mode shaped fuel assembly(FA) in core model is made. And the finite element model for stress calculation of FA components is developed. In the model the fuel rods (FRs) and the guide thimbles are modelled by 3-dimensional beam elements, and the spacer grid spring is modelled by a linear and relational spring. The constraints come from the results of the program MAIN. The stress analysis of the 16$\times$16 type FA under arbitary seismic load is performed using the developed program and modelling technique as an example. The developed stress model is helpful for the stress calculation of FA components for seismic and blowdown loads to evaluate the structural integrity of FA.

  • PDF

Modeling and Vibration Analysis of Vehicle Structures Using Equivalent Beam Stiffness for Joint (조인트 등가빔을 이용한 저진동 차체 모델링 및 해석기법)

  • 임홍재;김윤영;이상범;송명의
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.40-44
    • /
    • 1995
  • 본 논문에서는 결합부의 강성도를 나타내기 위해 그동안 사용되어 오던 기존의 스프링 모델을 사용하는 대신 등가빔 조인트 모델을 차체의 유한요소모델에 적용하여 보았으며 차체의 기본 진동 모드 해석을 통해 그 타당성을 검증하여 보았다. 특히 본 연구를 통해 차체 설계시 특정 결합부 강성도를 효율적으로 결정할 수 있는 방법의 개발이 가능해졌으며 그 방법의 개발을 위해 현재 계속 연구가 진행되고 있음을 밝힌다.

  • PDF

A Study on Comparison of Development Productivity of Spring Framework 2.0 and 2.5 with Lightweight Container Architecture (동일한 경량 컨테이너 구조 환경에서 스프링 프레임워크 2.0과 2.5의 개발 생산성 비교 연구)

  • Lee, Myeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1265-1274
    • /
    • 2009
  • This paper proposes an object-oriented software development guidance and an evaluation index for the productivity related to Spring Framework 2.0 and 2.5. Spring Framework is a known successful open source standard model for lightweight container architecture. However, there is no comparison research about the performance of Spring Framework 2.0 and 2.5 with same identical platform. Quantitative analysis is supported as a part of LoC(Line of Code) analysis. There is a limit to develop the updated software with no the specific evaluating index for the productivity of the software. This work proposes an specific index for evaluating the productivity of new version Spring Framework on a platform. Base on the result, the specific guidance of the developing software is obtained.

A Study on the Fast Removement of Overlaps in Image Morphing Using Mass-Spring System (질량-스프링 시스템을 이용한 이미지 모핑의 빠른 겹침 제거 연구)

  • Choi, Do-Won;Hwang, Chi-Jung
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.10
    • /
    • pp.1262-1274
    • /
    • 2011
  • A fast and stable deformation model is essential for realistic simulation of image morphing. In order to stabilize deformation, we used two internal thin plate mass-spring systems that compute the displacements of the x- and y-components of all nodes on the mesh. The deformation results are globally smoother and more stable due to the direction limitation of thin plate mass-spring systems. One-to-one deformation is one of the important issues in image morphing. We focus on fast removing overlaps in the process of deformation. To rapidly remove overlaps, the external forces are set automatically on four or eight neighboring nodes. The speed of removing overlaps is faster when external forces are set on four or eight neighbouring nodes than when on two neighbouring nodes.

Effect of Rack Compartment using Barriers on Reducing the Fire Spread (차단막에 의한 랙크 구획화가 화재확산 저감에 미치는 영향)

  • Cho, Gyu-Hwan;Yeo, In-Hwan
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.66-75
    • /
    • 2018
  • A barrier installed within a rack plays a significant role in delaying the initial spread of fire but it can be an obstacle to a ceiling-type sprinkler installed for extinguishing fires and for supplying fire extinguishing water. An in-rack sprinkler and a barrier can be applied at the same time, but a study on a barrier's ability to delay fire spread or its effect on the in-rack sprinkler is needed. Accordingly, this study examined the effect of a barrier on the delay of fire spread and the in-rack sprinkler according to installation conditions through the reduced scale fire test. As a result, the delay in fire spread increased more than four times when a horizontal barrier and a vertical barrier were installed at the same time. The temperature was also increased two to three times with the compartment, resulting in the early operation of the in-rack sprinkler.

Modeling and Verification of Multibody Dynamics Model of Military Vehicle Using Measured Data (실차 측정 정보를 이용한 군용 차량의 다물체 동역학 모델링 및 검증)

  • Ryu, Chi Young;Jang, Jin Seok;Yoo, Wan Suk;Cho, Jin Woo;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1231-1237
    • /
    • 2014
  • It is essential to perform driving performance tests of military vehicles on rough terrain. A full car test is limited by cost and time constraints, because of which a dynamic analysis via computer simulation is preferred. In this study, a vehicle model is developed using MSC.ADAMS, a commercial multibody analysis program, and compared via experiments. FTire is modeled using the results of a tire performance test to obtain the vertical stiffness. A nonlinear damper is modeled by a characteristic experiment. Leaf springs are modeled with beam force elements and consisted to a vehicle model. The vertical force and acceleration response of the wheel are identified when vehicle is passing over a simple bump as well as a sinusoidal road. The developed vehicle model is verified with the results of a full car test.

Transient Analysis of High-rise Wall-Frame Structures with Outriggers under Seismic Load (초고층 전단벽-골조 아웃리거 구조시스템의 지진하중에 대한 시간이력해석)

  • Kim, Jin Man;Choe, Eun Hui;Park, Dae Gyu;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.303-312
    • /
    • 2008
  • In this paper, the seismic behavior of shear wal-frame systems is analyzed. The governing equations of the wall-frame systems with outrigger truss are formulated through the continuum approach and the whole structure is idealized as a shear-flexural cantileverwith rotational spring. The effect of shear deformation and flexural deformation of the wall-frame and outrigger trusses are considered and incorporated in the formulation of the wall-frame structures with and without outriggers are compared by using finite element analysis incorporated with the Newmark-${\beta}$ method. Numerical results are obtained and compared with the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reason ably accurate results in the early design stage of tall building structures.

Analysis Model Considering Behavior Characteristics of Rail Floating Tracks (레일플로팅궤도의 거동특성을 반영한 해석모델)

  • Jung-Youl Choi;Jin-Il Kim;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.625-631
    • /
    • 2023
  • This study proposes an analysis model that can reflect the actual behavior of the rail floating track, and the most reasonable model was analyzed through field measurement and numerical analysis. It was analyzed that the current design theory analysis results of rail floating tracks were different from the field measurement results and were not suitable to reflect the actual behavior. In the rail floating track, it was analyzed that the subsidence of the point directly affects the total displacement rather than the displacement due to the bending of the rail. As a result of numerical analysis, it was analyzed that the analysis result of the proposed model, which is a parallel arrangement spring model that does not have a support point directly below the rail, reflects the actual behavior. The analysis model presented in this study can be used to predict track behavior when designing and maintaining rail floating tracks in the future.

A Study on Design Optimization of an Axle Spring for Multi-axis Stiffness (다중 축 강성을 위한 축상 스프링 최적설계 연구)

  • Hwang, In-Kyeong;Hur, Hyun-Moo;Kim, Myeong-Jun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2017
  • The primary suspension system of a railway vehicle restrains the wheelset and the bogie, which greatly affects the dynamic characteristics of the vehicle depending on the stiffness in each direction. In order to improve the dynamic characteristics, different stiffness in each direction is required. However, designing different stiffness in each direction is difficult in the case of a general suspension device. To address this, in this paper, an optimization technique is applied to design different stiffness in each direction by using a conical rubber spring. The optimization is performed by using target and analysis RMS values. Lastly, the final model is proposed by complementing the shape of the weak part of the model. An actual model is developed and the reliability of the optimization model is proved on the basis of a deviation average of about 7.7% compared to the target stiffness through a static load test. In addition, the stiffness value is applied to a multibody dynamics model to analyze the stability and curve performance. The critical speed of the improved model was 190km/h, which was faster than the maximum speed of 110km/h. In addition, the steering performance is improved by 34% compared with the conventional model.