Proceedings of the Korean Information Science Society Conference
/
2003.10a
/
pp.172-174
/
2003
전자우편은 인터넷의 성장과 함께 필수적인 점보교환 수단으로 자리잡고 있다. 그 신속성과 용이성을 이용하여 많은 기업과 업체들이 손쉽게 광고 수단으로 이용하여 이로 인하여 개인과 기업에 큰 피해를 초래하고 있다. 필요한 스팸메일을 선정하여 분류하는데 개인과 조직에 많은 정신적 물리적인 스트레스를 요구한다. 본 논문에서는 통계적 학습 방법인 SVM을 이용하여 지속적으로 변화하는 다양한 스팸메일을 분류하고자 한다. 실험결과는 스팸메일 분류에 안정적인 성능을 보여줄 뿐 아니라 다양한 종류의 스팸메일을 카테고리별로 구분해 내는데 높은 성능을 보여준다.
Kim, Seongyoon;Cha, Taesoo;Park, Jeawon;Choi, Jaehyun;Lee, Namyong
Journal of Information Technology Services
/
v.13
no.3
/
pp.299-308
/
2014
Due to indiscriminately received spam messages on information society, spam messages cause damages not only to person but also to our community. Nowadays a lot of spam filtering techniques, such as blocking characters, are studied actively. Most of these studies are content-based spam filtering technologies through machine learning.. Because of a spam message transmission techniques are being developed, spammers have to send spam messages using term spamming techniques. Spam messages tend to include number of nouns, using repeated words and inserting special characters between words in a sentence. In this paper, considering three features, SPSS statistical program were used in parameterization and we derive the equation. And then, based on this equation we measured the performance of classification of spam messages. The study compared with previous studies FP-rate in terms of further minimizing the cost of product was confirmed to show an excellent performance.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.264-266
/
2012
인터넷 상에서의 변형 단어들을 처리하는 문제는 정보 검색, 기계 번역, 웹 마이닝, 욕설 및 스팸 필터링과 같은 다양한 분야에서 사용될 수 있다. 특히 단어의 변형 추이를 파악하는 등 데이터 수집 및 분석을 위해서는 주어진 단어가 어떤 변형 단어의 집합으로 이루어진 부류에 포함되는지 여부를 파악해야 할 필요성이 있다. 본 논문에서는 같은 부류에 속한 변형 단어 집합에 대하여 다중 서열 정렬(multiple sequence alignment)을 수행함으로써 해당 집합을 하나의 대표 문자열로 취급하는 변환 기법을 제안하고, 이를 이용해 주어진 단어가 해당 부류에 속하는지 여부를 효과적으로 분류하는 기법을 소개한다. 실험결과 제안 기법의 분류 성능은 민감도 93.4% 수준에서 89.1%의 특이도를 보여 전수 비교를 통한 분류에 비하여 결코 성능은 하락하지 않으면서 분류 속도는 16.5배 향상되었음을 확인할 수 있었다.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.35-39
/
2009
이메일의 사용증가로 수신 메일을 효율적이면서 정확하게 분류할 필요성이 점차 증가하고 있다. 현재의 이메일 분류는 베이지안, 규칙 기반 등을 이용하여 스팸 메일을 필터링하기 위한 이원 분류가 주를 이루고 있다. 클러스터링을 이용한 다원 분류 방법은 분류의 정확도가 떨어지는 단점이 있다. 본 논문에서는 비음수 행렬 분해(NMF, Non-negative Matrix Factrazation)를 기반으로 한 자동 분류 주제 생성 방법과 동적 분류 체계(DCH, Dynamic Category Hierachy) 방법을 결합한 새로운 이메일 분류 방법을 제안한다. 이 방법은 수신되는 이메일을 자동으로 분류하여 대량의 메일을 효율적으로 관리할 수 있으며, 분류 결과 사용자의 요구사항을 만족하지 못하면 메일을 동적으로 재분류 하여 분류 정확률을 높일 수 있다.
사회공학적 공격이란 인간의 심리를 이용하여 보안 위협 상황을 갖게 하는 공격을 말한다. 그렇기 때문에 사회공학적 공격을 막기 위한 보안 솔루션은 그 한계가 있기 마련이다. 그리하여 본 논문에서는 사회공학적 공격에 대비하는 보안훈련시스템을 제안한다. 스팸 및 피싱 이메일을 수집하여, 시그니처 기반 필터링을 이용하여, 최신의 사회공학적 공격 이메일을 분석한 후, 가상으로 사회공학적 이메일 공격을 실시하여 훈련대상자들이 최신의 사회공학적 공격에 대비하는 능력을 갖추게 하는 보안 훈련 시스템을 설계하였다.
Determining the similarity between two strings can be applied various area such as information retrieval, spell checker and spam filtering. Similarity calculation between Korean strings based on dynamic programming methods firstly requires a definition of the similarity between phonemes. However, existing methods have a limitation that they use manually set similarity scores. In this paper, we propose a method to automatically calculate inter-phoneme similarity from a given set of variant words using a PAM-like probabilistic model. Our proposed method first finds the pairs of similar words from a given word set, and derives derivation rules from text alignment results among the similar word pairs. Then, similarity scores are calculated from the frequencies of variations between different phonemes. As an experimental result, we show an improvement of 10.1%~14.1% and 8.1%~11.8% in terms of sensitivity compared with the simple match-mismatch scoring scheme and the manually set inter-phoneme similarity scheme, respectively, with a specificity of 77.2%~80.4%.
Since spear-phishing mail attacks focus on a particular target persistently to collect and take advantage of information, it can incur severe damage to the target as a part of the intelligent and new attacks such as APT attacks and social engineering attacks. The usual spam filtering services can have limits in countering spear-phishing mail attacks because of different targets, goals, and methods. In this paper, we analyze mail security services of several enterprises hosted by midium and small-sized enterprises with relatively security vulnerabilities in order to see whether their services can effectively respond spear-phishing mail attacks. According to the analysis result, we can say that most of mail security hosting services lack in responding spear-phishing mail attacks by providing functions for mainly managing mails including spam mail. The analysis result can be used as basic data to extract the effective and systematic countermeasure.
Journal of the Institute of Electronics Engineers of Korea TE
/
v.37
no.5
/
pp.125-131
/
2000
In this paper, we proposed conditional access algorithm for data confidential using smart card. This algorithm is constructed smart card and E-mail gateway for restricting of user's illegal confidential data transmission. After processing of certification procedure in smart card, each E-mail forwarded to E-mail gateway(EG). The EG selects outgoing E-mail and it is sent to fire-wall E-mail processing program, it is checked attached file in transmission mail and if it is attached file, it writes to database. This time, it can be used evidence data about user's illegal confidential data transmission, because of using registered content and smart card certification data in database. in addition to, we can get psychologically effect of prevention to send illegally, and this system can prevent spam mail in EG, also.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.576-579
/
2009
The amount of incoming e-mails is increasing rapidly due to the wide usage of Internet. Therefore, it is more required to classify incoming e-mails efficiently and accurately. Currently, the e-mail classification techniques are focused on two way classification to filter spam mails from normal ones based mainly on Bayesian and Rule. The clustering method has been used for the multi-way classification of e-mails. But it has a disadvantage of low accuracy of classification. In this paper, we propose a novel multi-way e-mail classification method that uses PCA for automatic category generation and dynamic category hierarchy for high accuracy of classification. It classifies a huge amount of incoming e-mails automatically, efficiently, and accurately.
This study was directed at the design of a hybrid algorithm for competition relation extraction. Previous works on relation extraction have relied on various lexical and deep parsing indicators and mostly utilize only the machine learning method. We present a new algorithm integrating machine learning with various filtering methods. Some simple but useful features for competition relation extraction are also introduced, and an optimum feature set is proposed. The goal of this paper was to increase the precision of competition relation extraction by combining supervised learning with various filtering methods. Filtering methods were employed for classifying compete relation occurrence, using distance restriction for the filtering of feature pairs, and classifying whether or not the candidate entity pair is spam. For evaluation, a test set consisting of 2,565 sentences was examined. The proposed method was compared with the rule-based method and general relation extraction method. As a result, the rule-based method achieved positive precision of 0.812 and accuracy of 0.568, while the general relation extraction method achieved 0.612 and 0.563, respectively. The proposed system obtained positive precision of 0.922 and accuracy of 0.713. These results demonstrate that the developed method is effective for competition relation extraction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.