There are many internet users who collect the public opinions and express their opinions for internet news or blog articles through the replying comment on online community. But, it is hard to search and explore useful messages on web blogs since most of web blog systems show articles and their comments to the form of sequential list. Also, spam and malicious comments have become social problems as the internet users increase. In this paper, we propose a clustering and visualizing system for responding comments on large-scale weblogs, namely 'Daum AGORA,' using similarity analysis. Our system shows the comment clustering result as a simple screen view. Our system also detects spam comments using Needleman-Wunsch algorithm that is a well-known algorithm in bioinformatics.
Many more use e-mail purely on a personal basis and the pool of e-mail users is growing daily. Also, the amount of mails, which are transmitted in electronic commerce, is getting more and more. Because of its convenience, a mass of spam mails is flooding everyday. And yet automated techniques for learning to filter e-mail have yet to significantly affect the e-mail market. This paper suggests Web Mail Filtering Agent for Personalized Classification, which automatically manages mails adjusting to the user. It is based on web mail, which can be logged in any time, any place and has no limitation in any system. In case new mails are received, it first makes some personal rules in use of the result of observation ; and based on the personal rules, it automatically classifies the mails into categories according to the contents of mails and saves the classified mails in the relevant folders or deletes the unnecessary mails and spam mails. And, we applied Bayesian Algorithm using Dynamic Threshold for our system's accuracy.
Journal of the Korea Institute of Information Security & Cryptology
/
v.18
no.2
/
pp.129-137
/
2008
In this paper, we propose an improved Bayesian Filtering mechanism to reduce the False Positives that occurs in the existing Bayesian Filtering mechanism. In the existing Bayesian Filtering mechanism, the same Bayesian Filtering DB trained at the e-mail server is applied to each e-mail user. Also, the training method using receiving e-mails only could not provide the high quality of ham DB. Due to these problems, the existing Bayesian Filtering mechanism can produce the False Positives which misclassify the ham e-mails into the spam e-mails. In the proposed mechanism, the sending e-mails of the user are treated as the high quality of ham information, and are trained to the Bayesian ham DB automatically. In addition, by providing a different Bayesian DB to each e-mail user respectively, more efficient e-mail filtering service is possible. Our experiments show the improvement of filtering accuracy by 3.13%, compared to the existing Bayesian Filtering mechanism.
Electronic mail (E-mail) is an integral part of communication for the recent Internet users. However, e-mail has also come to serve as a means to support flood of unwanted spam mails and junk mails having bad purposes. This paper was conducted in order to develop an intelligent e-mail system using user behavior pattern that can prevent these unnecessary information and enable the user to enjoy communication via e-mail in a cleaner environment. The concentrated analysis of the user behavior in terms of using e-mail functions has resulted in better classification between unnecessary and necessary information, thereby facilitating faster disposal of spam mails.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.552-554
/
2003
전자우편은 기존 우편 기능을 대체하는 대표적인 정보 전달 수단으로 자리 잡고 있다. 전자매일 사용자의 증가에 따라 망은 기업들은 전자 메일을 통해 광고를 하게 되었다. 이에 따라 전자매일 사용자들은 인터넷 상에 개인 전자메일 주소가 노출됨으로 많은 스팸메일을 수신하게 되는데, 이것은 전자메일 사용자에게 많은 부담이 되고있다. 본 논문은 전자우편 문서내의 단어들을 대상으로 통계적 방법의 SVM을 이용하여 스팸메일을 필터링 하였으며, 학습 단계에서 단어 자질공간의 축소를 위해 DF값 변화에 따른 학습을 통하여 분류의 성능을 비교하였다. SVM의 성능 평가를 위해 확률적 방법의 나이브 베이지안과 벡터 모텔을 이용한 분류기와 성능을 비교함으로써 SVM 방법이 우수한 성능을 보임을 검증하였다.
오늘날 사람들의 의견을 제시하는 공간은 폐쇄적인 인쇄물이나 수동적인 답변 수준을 벗어나 무한의 공간을 가지는 웹에서 이루어지고 있다. 불특정 다수를 대상으로 하며 정형화된 틀을 없는, 더욱 유용한 의견을 많이 얻을 수 있는 특징을 가졌기 때문에, 이를 위해 오피니언 마이닝에 대한 연구가 활발히 진행되고 있다. 기본적으로 오피니언 마이닝은 해당 분야에 대한 정확한 정보를 찾는 것을 목적으로 하지만, 그러한 정보를 제외한 나머지 부분에 대해서도 충분히 유용하게 사용할 수 있다. 본 논문에서는 그 나머지 부분을 이용하여 무분별하게 등록되고 있는 스팸성 댓글을 효과적으로 필터링 할 수 있는 방법을 제안한다.
As electronic mails are being widely used for facility and speedness of information communication, as the amount of spam mails which have malice and advertisement increase and cause lots of social and economic problem. A number of approaches have been proposed to alleviate the impact of spam. These approaches can be categorized into pre-acceptance and post-acceptance methods. Post-acceptance methods include bayesian filters, collaborative filtering and e-mail prioritization which are based on words or sentances. But, spammers are changing those characteristics and sending to avoid filtering system. In the case of Korean, the abnormal usages can be much more than other languages because syllable is composed of chosung, jungsung, and jongsung. Existing formal expressions and learning algorithms have the limits to meet with those changes promptly and efficiently. So, we present an methods for recognizing Korean abnormal language(Koral) to improve accuracy and efficiency of filtering system. The method is based on syllabic than word and Smith-waterman algorithm. Through the experiment on filter keyword and e-mail extracted from mail server, we confirmed that Koral is recognized exactly according to similarity level. The required time and space costs are within the permitted limit.
Kim Ji-Soo;Kim Soo-Hyung;Han Seung-Wan;Nam Taek-Yong;Son Hwa-Jeong;Oh Sung-Ryul
The KIPS Transactions:PartB
/
v.13B
no.4
s.107
/
pp.409-416
/
2006
In this paper, we propose an algorithm for extracting text regions from spam-mail images using color layer. The CLTE(color layer-based text extraction) divides the input image into eight planes as color layers. It extracts connected components on the eight images, and then classifies them into text regions and non-text regions based on the component sizes. We also propose an algorithm for recovering damaged text strokes from the extracted text image. In the binary image, there are two types of damaged strokes: (1) middle strokes such as 'ㅣ' or 'ㅡ' are deleted, and (2) the first and/or last strokes such as 'ㅇ' or 'ㅁ' are filled with black pixels. An experiment with 200 spam-mail images shows that the proposed approach is more accurate than conventional methods by over 10%.
As increasing the user of VoIP service using ITSP(Internet Telephony Service Provider), the VoIP spam becomes a big problem. The spam used in the existing public telephone is detected by using the pattern inspection of call behavior because it is difficult to filter contents for the characteristic of real-time voice communication. However there is a false-positive problem. The threat on spam remains where spam with low threshold can't be detected or users share one number. In this paper, we propose anti-spam for VoIP based on luring test. The proposed method gives a user luring test and he/she can connect to a receiver if passing turing test. A ticket is given to a user that pass luring test and it reduces overhead of luring test in re-dial. The proposed method is implemented on ASUS WL-500G wireless router and Asterisk IP-PBX. Experimental results show the effectiveness of the proposed method.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2003.10a
/
pp.211-214
/
2003
The problem of unsolicited e-mail has been increasing for years, so many researchers has studied about spam filtering and prevention. In this article, we proposed a faster spam prevention algorithm based on userID instead of full email address. But there are 2% of false-negatives by userID. In this case, we store those domains in a DB and filter them out. The proposed algorithm requires small DB and 3.7 times faster than the e-mail address comparison algorithm. We implemented this algorithm using SPRSW(Spam Prevention using Replay Secrete Words) to register userID automatically in userID DB.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.